استخراج منحنی‌های شدت-مدت-فراوانی (IDF) در شرایط تغییر اقلیم، مطالعه موردی:ایستگاه سینوپتیک اصفهان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد /دانشکده مهندسی عمران، دانشگاه صنعتی اصفهان

2 دانش آموخته کارشناسی ارشد مهندسی عمران/ مدیریت منابع آب، دانشگاه صنعتی اصفهان

چکیده

بسیاری از سازه های هیدرولیکی با استفاده از شدت بارش‌های طراحی با دوره‌ی بازگشت و زمان تداوم مشخص طراحی می‌شوند، لذا منحنی‌های شدت- مدت- فراوانی (IDF) نقش اساسی در طراحی ابعاد و اجزای این سیستم‌ها دارند. این منحنی ها با استفاده از داده های مربوط به رگبارهای تاریخی ثبت شده در ایستگاه های هواشناسی استخراج می شوند. از طرف دیگر با توجه به پدیده‌ی تغییر اقلیم که پیامد رشد روزافزون فعالیت‌های انسانی است، الگوهای بارش در مناطق مختلف جهان تغییر کرده و لذا نیاز به اصلاح منحنی‌های شدت- مدت– فراوانی در شرایط جدید و پیش یابی برای آینده می باشد. در این تحقیق با استفاده از تئوری فرکتال که مبتنی بر نوعی نظم در بی نظمی است، اقدام به بررسی تغییرات منحنی های شدت- مدت- فراوانی در ایستگاه سینوپتیک اصفهان شد. منحنی‌های در سه دوره زمانی به‌صورت دوره تاریخی (1967-1993)، دوره اخیر (1994-2016) و دوره آینده تحت شرایط تغییر اقلیم (2017-2035) استخراج و تغییرات آن‌ها مورد بررسی قرار گرفت. برای شرایط آینده از خروجی وزن دهی شده 15 مدل AOGCMتحت سناریو انتشار A2 مربوط در چهارمین گزارش ارزیابی IPCC استفاده‌ شده است. در دوره اخیر و دوره پیش‌بینی به دلیل تشدید پدیده‌ی تغییر اقلیم، هر چند میانگین بارش ها کاهش یافته ولی شدت بارش‌های با تداوم کوتاه افزایش یافته و منحنی‌های IDF به سمت بالا جابجا گردیدند. این میزان افزایش به بیش از حدود 52 درصد نسبت به داده های تاریخی هم می رسد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Extraction of Intensity-Duration-Frequency (IDF) Curves under Climate Change, Case study: Isfahan Synoptic Station

نویسندگان [English]

  • Hamid Reza Safavi 1
  • Shahabodin Dadjou 2
  • Golnar Naeimi 2
1 Professor, Dept. of Civil Engineering, Isfahan University of Technology, Isfahan, Iran.
2 M.Sc. Graduate, Dept. of Civil Engineering, Isfahan University of Technology, Isfahan, Iran.
چکیده [English]

Many hydraulic structures are designed by using the design precipitation with return periods duration time based on concentration time. Therefore, in any region, Intensity-Duration-Frequency (IDF) curves play a significant role in the design of dimensions and components of these systems especially in regions without adequate rain gauge stations. However, following climate change due to the increasing human activities precipitation patterns has changed in various regions of the world. Therefore, the historical IDF curves are not applicable. In this study, according to the Isfahan meteorological synoptic station IDF curves were developed. Eextraction of precipitation intensity with continued short of 24-hour precipitation has been done by using fractal theory. In the present study, extractions of the IDF curves were divided into three periods: the historical period (1967-1993), the present period (1994-2016), and the future period (2017-2035). It was perceived that precipitation intensity with short-term duration increased because of changes in the climatology, and IDF curves are shifted upwards. In this study, to predict the daily precipitation weighted output 15 AOGCM models under the A2 emission scenario related to the Fourth Assessment Report (AR4) IPCC, as the most reliable tool were used. The results show that the predicted IDF for future (2017-2035) will increase about 52 percent related to past IDF (1967-1993) in this region.

کلیدواژه‌ها [English]

  • climate change
  • Intensity-Duration-Frequency curves
  • Fractal theory
  • Maximum annual precipitation intensity
  • Isfahan synoptic station
Adams HM, Russ JC (1992) Chaos in the classroom: exposing gifted elementary school children to chaos and fractals. Journal of Science Education and Technology 1(3):191-209
Bara M, Kohnova S, Gaal L, Szolgay J, Hlavˇcova K (2009) Estimation of IDF curves of extreme rainfall by simple scaling in Slovakia. Contributions to Geophysics and Geodesy 39(3):187-206
Bell FC (1969) Generalized rainfall-duration-frequency relationships. Journal of the Hydraulics Division 95(1): 311-328            
Bernard MM (1932) Formulas for rainfall intensities of long duration. Transactions of the American Society of Civil Engineers 96(1):592-606
Burlando P, Rosso R (1996) Scaling and muitiscaling models of depth-duration-frequency curves for storm precipitation. Journal of Hydrology 187:45-64
Chen Cl (1983) Rainfall intensity‐duration‐frequency formulas. Journal of Hydraulic Engineering 109(12):1603-1621
Chen L-H, Lin G-F, Hsu C-W (2011) Development of design hyetographs for ungauged sites using an approach combining PCA, SOM and kriging method. Water Resources Management 25(8):1995-2013
Cheng K-S, Hueter I, Hsu E-C, Yeh H-C (2001) A scale-invariant Gauss-Markov model for design storm hydrographs. Journal of the American Water Resources Association 37(3):723-735
Deidda R (2000) Rainfall downscaling in a space-time multifractal framework. Water Resources Research 36(7):1779-1794 
Eslamian SS, Safavi HR, Goharian AR, Sajjadi M, Raghibi V, Zareian MJ (2017) Climate change impacts on some hydrological variables in the Zayandeh-Rud River Basin, Iran. Reviving the Dying Giant pp 201-217. Springer. DOI 10.1007/978-3-319-54922-4_13
García‐Marín A, Ayuso‐Muñoz J, Jiménez‐Hornero F, Estévez J (2013) Selecting the best IDF model by using the multifractal approach. Hydrological Processes 27(3):433-443
Gupta VK, Waymire E (1990) Multiscaling properties of spatial rainfall and river flow distributions. Journal of Geophysical Research 95(D3):1999
Hassanzadeh E, Nazemi A, Elshorbagy A (2014) Quantile-based downscaling of precipitation using genetic programming: application to IDF Curves in Saskatoon. Journal of Hydrologic Engineering 19(5):943-955
Hayles NK (1989) Chaos as orderly disorder: shifting ground in contemporary literature and science. New Literary History 20(2):305
Kaboosi K, Kordjazi M (2017) Effect of climate change on meteorological parameters and drought in Golestan Province. Iran-Water Resources Research 13(3):205-213 (In Persian)
Kolmogorov AN (2018) Foundations of the theory of probability: Second English edition. Courier Dover Publications
Mandelbrot BB (1982) The fractal geometry of nature, vol 1. WH freeman New York
Molnar P, Burlando P (2005) Preservation of rainfall properties in stochastic disaggregation by a simple random cascade model. Atmospheric Research 77(1-4):137-151
Menabde M, Seed A, Pegram G (1999) A simple scaling model for extreme rainfall. Water Resources Research 35(1):335-339
Nouri Ghidari MH (2012) Extraction of intensity-duration-frequency curves from daily rainfall data using fractal theory. Journal of Water and Soil (Agricultural Science and Technology) 26(3):716-726  (In Persian)
Ragno E, AghaKouchak A, Love CA, Cheng L, Vahedifard F, Lima CHR (2018) Quantifying changes in future intensity-duration-frequency curves using multimodel ensemble simulations. Water Resources Research 54(3):1751-1764
Safavi HR (2014) Engineering hydrology. 4th Edition, Arkan Danesh Press, 704p (In Persian)
Sarhadi A, Soulis ED (2017) Time-varying extreme rainfall intensity-duration-frequency curves in a changing climate. Geophysical Research Letters
Schaefer MG (1990) Regional analyses of precipitation annual maxima in Washington State. Water Resources Research 26(1):119-131
Seyed Kaboli H (2016) Uncertainty of extreme rainfall intensity and frequency under future climate change impact: Khorasan-Razavi Province. Iran-Water Resources Research, 12(2):93-103 (In Persian)
Simonovic SP, Schardong A, Sandink D, Srivastav R (2016) A web-based tool for the development of intensity duration frequency curves under changing climate. Environmental Modelling & Software 81:136-153
Smithers J, Schulze R (2001) A methodology for the estimation of short duration design storms in South Africa using a regional approach based on L-moments. Journal of Hydrology 241(1-2):42-52
Srivastav RK, Schardong A, Simonovic SP (2014) Equidistance quantile matching method for updating IDF curves under climate change. Water Resources Management 28(9):2539-2562
Walck C (1996) Hand-book on statistical distributions for experimentalists.       
Yu P-S, Yang T-C, Lin C-S (2004) Regional rainfall intensity formulas based on scaling property of rainfall. Journal of Hydrology 295(1-4):108-123