تغییرات مکانی شوری آب‌زیرزمینی و ارزیابی خطر نفوذ آب شور در آبخوان دشت ملکان

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشگاه تبریز

چکیده

حفاظت کیفی منابع آب‌های زیرزمینی به عنوان یکی از با ارزش‌ترین منابع ملی امری حیاتی می‌باشد. یکی از راه‌های مناسب برای جلوگیری از آلودگی آب های زیرزمینی، بررسی تغییرات مکانی کیفیت آب های زیرزمینی و شناسایی مناطق آسیب‌پذیر آبخوان است. تغییرات مکانی شوری آب زیرزمینی دشت ملکان، با معرفی شاخص کیفی نفوذ آب شور (GWQISI)، با تلفیق 5 معیار TDS وCl−/sum Anion و Cl−/(HCO3− + CO32-) و Na+/(Na+ + Cl−) وCa2+/(HCO3− + SO42-) ، بررسی شده‌است. همچنین در این پژوهش آسیب‌پذیری آبخوان ساحلی دشت ملکان، با معرفی مدل تصمیم گیری جدید چند معیاره (IDLRT) مورد ارزیابی قرار گرفته است. مدل IDLRT نیز بر اساس 5 پارامتر، میزان بزرگی و گستردگی آب شور نفوذ کرده (I)، فاصله از ساحل(D)، ارتفاع سطح آب‌های زیرزمینی بالاتر از میانگین سطح دریا (L)، تغذیه (R) و ضخامت آبخوان (T) حاصل شده‌است. نتایج تحلیل حساسیت مدل به دو روش تک پارامتری و حذف پارامتر، نشان می‌دهد، پارامتر میزان تغذیه بیشترین تأثیر را بر شاخص آسیب پذیری دارد. براساس نتایج حاصل از مدل IDLRT، در حدود 15/22، 45/49 و 4/28 درصد از آبخوان به ترتیب دارای آسیب‌پذیری بسیار کم، کم و متوسط می‌باشد. نقشه پهنه بندی شوری دشت بر اساس شاخص GWQISI گویای این است که حدود 75/1، 25/4 و 4/62 کیلومتر مربع از سفره آب زیرزمینی مورد مطالعه بترتیب تحت تاثیر شوری شدید، بالا و متوسط می‌باشد. نتایج نشان می‌دهد که در حال حاضر بخش شمالی و شمال غربی دشت تحت نفوذ آب شور قرار دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Spatial Variation of Groundwater Salinity and Risk Assessment of Saltwater Intrusion in Malekan Aquifer

نویسندگان [English]

  • Farahnaz Azizi
  • Asghar Asghari Moghaddam
  • Amirhossein Nazemi
University of Tabriz
چکیده [English]

As the most valuable natural resources, protection and management of groundwater is vital. One of the best ways to protect groundwater resources is identifying the aquifer vulnerable areas and monitoring groundwater quality spatial variations. The spatial variation of the groundwater salinity, has been evaluated in Malekan aquifer, introducing a new method, named GWQISI which has been digitally integrated of TDS, Cl-/sum Anion, Cl-/ (HCO3- + CO32-), Na+/ (Na+ + Cl-) and Ca2+/ (HCO3- + SO42-) ratios. Also, this paper presents the vulnerability mapping of the coastal aquifer system using new multi-criteria decision model as IDLRT. Five thematic layers have been created to adopt the most indicative criteria for investigating the groundwater degradation trends from saltwater intrusion. One of these layers showed the magnitude of existing status of saltwater intrusion. The other chosen layers are Recharge (R), Level of groundwater above the mean sea level (L), Distance from the shore (D) and the aquifer saturated Thickness (T). The results of sensitivity analysis, using both the map removal and single parameter methods, indicate that the Recharge (R) has the most significant impact on the vulnerability index. The groundwater vulnerability map indicates Based on the IDLRT results, about 22.15, 49.45 and 28.4 % of Malekan aquifer have very low, low and moderate vulnerability, respectively. Based on the GWQISI results, about 1.75, 4.25 and 62.4 km2 of Malekan aquifer are extermly, highly and moderately influenced by salinity, respectively. The results reveal that the northwest part is the most affected zone by salinity.

کلیدواژه‌ها [English]

  • Groundwater
  • Salinity
  • Spatial Variations

Abd-Elhamid HF, and Javadi AA (2011a) A cost-effective method to control seawater intrusion in coastal aquifers. Water Resources Management 25(11):2755-2780

Abd-Elhamid HF, and Javadi AA (2011b) A density-dependant finite element model for analysis of saltwater intrusion in coastal aquifers. Journal of Hydrology 401(3):259-271

Anders R, Mendez GO, Futa K, Danskin WR (2014) A geochemical approach to determine sources and movement of saline groundwater in a coastal aquifer. Ground water 52(5):756-768, doi: 10.1111/gwat.12108

Azizi F, Asghari Moghaddam A, and Nazemi AH )2018( Evaluation of hydraulic parameters using electrical resistivity in Malekan Plain aquifer. Quaternary Journal of Iran, In press (In Persian)

Babaeian F, Bagheri A, Rafieian M (2016) Vulnerability analysis of water resources systems to water scarcity based on a water accounting framework (Case study: Rafsanjan study area). Iran Water Resources Research 12(1):1-17

Barber C, Bates LE, Barron R, and Allison H (1993) Assessment of the relative vulnerability of groundwater to pollution: A review and background paper for the conference workshop on vulnerability assessment. Austral. Geology and Geophysic 14(2/3):147-154

Bear J, Cheng AHD (2010) Modeling groundwater flow and contaminant transport (Vol. 23). Springer Science & Business Media

Bear J, Verruijt A (1987) Theory and applications of transport in porous media. Modeling of groundwater flow and pollution, Dordrecht: Reidel, http://link.springer.com/book/10.1007/978-94-017-1114-2

Bordalo AA, Nilsumranchit W, Chalermwat K (2001) Water quality and uses of the Bangpakong river (Eastern Thailand). Water Resources Research (15)35:3642-3635

Boyacioglu H (2007) Development of a water quality index based on a European classification scheme. Water Sa 33(1):101-106

Chachadi AG (2005) Seawater intrusion mapping using modified GALDIT indicator model-case study in Goa. Jalvigyan Sameeksha 20:29-45

Chachadi AG, Lobo-Ferreira JP (2001) Sea water intrusion vulnerability mapping of aquifers using GALDIT method. Coastin—A Coastal Policy Res Newsl 4:7-9

Dekkaki HC, Ali M B, Taleb A A, Myzy H, Zerrouk MH, Mesmoudi A (2017) Evaluation of intrinsic vulnerability against seawater intrusion using the GALDIT approach. Application to the R’mel aquifer (North West of Morocco). Journal of Materials and Environmental Sciences 9(1):107-112

Evans BM, Mayers WL (1990) A GIS based approach to evaluating regional groundwater pollution potential with. Journal of Soil and Water Conservation (45):242-245

Fass T, Cook PG, Stieglitz T, Herczeg AL (2007) Development of saline ground water through transpiration of sea water. Ground Water 45(6):703-710, doi: 10 .1111/ j .17 4 5 - 6 5 8 4 .20 0 7 .0 0 34 4 .x

Garing C, Luquot L, Pezard PA, and Gouze P (2013) Geochemical investigations of saltwater intrusion into the coastal carbonate aquifer of Mallorca, Spain. Applied Geochemistry 39:1-10

Han DM, Song XF, Currell MJ, Yang JL, and Xiao GQ (2014) Chemical and isotopic constraints on evolution of groundwater salinization in the coastal plain aquifer of Laizhou Bay, China. Journal of Hydrology 508:12-27

Hosseini-Moghari SM, Ebrahimi K, and Azarnivand A (2015) Groundwater quality assessment with respect to fuzzy water quality index (FWQI): An application of expert systems in environmental monitoring. Environmental Earth Sciences 74(10):7229-7238

Hounslow A (1995) Water quality data: Analysis and interpretation. CRC press

Javadi AA, Abd‐Elhamid HF, & Farmani R (2012) A simulation‐optimization model to control seawater intrusion in coastal aquifers using abstraction/recharge wells. International Journal for Numerical and Analytical Methods in Geomechanics 36(16):1757-1779, doi: 10.1002/nag.1068

Kaliraj S, Chandrasekar N, Peter TS, Selvakumar S, Magesh NS (2015) Mapping of coastal aquifer vulnerable zone in the south west coast of Kanyakumari, South India, using GIS-based DRASTIC model. Environmental Monitoring and Assessment 187(1):4073, 187:1-27, doi: 10.1007/s10661-014-4073-2

Kallioras A, Pliakas F, Skias S, Gkiougkis I (2011) Groundwater vulnerability assessment at SW Rhodope aquifer system in NE Greece. In Advances in the Research of Aquatic Environment (pp. 351-358). Springer Berlin Heidelberg, doi:10.1007/978-3-642-24076-8-41

Kardan Moghaddam H, Jafari F, Javadi S (2017) Vulnerability evaluation of a coastal aquifer via GALDIT model and comparison with DRASTIC index using quality parameters. Hydrological Sciences Journal 62(1):137-146

Kazakis N, Pavlou A, Vargemezis G, Voudouris KS, Soulios G, Pliakas F, Tsokas G (2016) Seawater intrusion mapping using electrical resistivity tomography and hydrochemical data. An application in the coastal area of eastern Thermaikos Gulf, Greece. Science of the Total Environment 543:373-387, http://dx.doi.org/10.1016/j.scitotenv.2015.11.041

Kura NU, Ramli MF, Ibrahim S, Sulaiman WNA, Aris AZ (2014) An integrated assessment of seawater intrusion in a small tropical island using geophysical, geochemical, and geostatistical techniques. Environmental Science and Pollution Research 21(11):7047-7064, doi: 10.1007/s11356-014-2598-0

Lobo Ferreira JP (2001) Sea water intrusion vulnerability mapping of aquifers issuing GALDIT method. Proceeding of the Workshop on Modeling in Hydrogeology, Anna University, Chennai, 3-7 December, 143-156

Lobo-Ferreira JP, Chachadi AG (2005) Assessing aquifer vulnerability to saltwater intrusion using GALDIT method: Part 1–Application to the Portuguese aquifer to Monte Gordo. Proceedings of this 4:1-12

Mahesha A, Vyshali Lathashri UA, Ramesh H (2011) Parameter estimation and vulnerability assessment of coastal unconfined aquifer to saltwater intrusion. Journal of Hydrologic Engineering 17(8):933-943, doi:10.1061/(ASCE)HE.1943-5584.0000524

Mahrez B, Klebingat S, Houha B, Houria B (2018) GIS-based GALDIT method for vulnerability assessment to seawater intrusion of the Quaternary coastal Collo aquifer (NE-Algeria). Arabian Journal of Geosciences 11(4):71

McLay CDA, Dragden R, Sparling G, and Selvarajah N (2001) Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: A comparison of three approaches. Environmental Pollution 115:191-204

Merchant JW (1994) GIS-based groundwater pollution hazard assessment: A critical review of the model. Photogramm. Engng and Remote Sensing 60(9):1117-1127

Mishra PC, Patel RK (2001) Study of the pollution load in the drinking water of Rairangpur, a small tribal dominated town of North Orissa. Indian J Environ Ecoplan 5(2):293-298

Mitra BK (1998) Spatial and temporal variation of ground water quality in sand dune area of Aomori Prefecture in Japan. American Society of Agricultural and Biological Engineers, doi: 10.13031/2013.20673

Moridi A, Kerachian R, Zokaei M (2017) Assessment of Iran’s water resources quality (2004-2014). Iran Water Resources Research 12(4):23-35

Morrow FJ, Ingham MR, McConchie JA (2010) Monitoring of tidal influences on the saline interface using resistivity traversing and cross-borehole resistivity tomography. Journal of Hydrology 389(1):69-77, doi:10.1016/j.jhydrol.2010.05.022

Napolitano P, and Fabbri AG (1996) Single-parameter sensitivity analysis for aquifer vulnerability assessment using and SINTACS. HydroGIS 96: Application of geographical information systems in hydrology and water resources management, Proceedings of Vienna Conference. IAHS Pub. (235):559-566

Reddy AGS, Saibaba B, Sudarshan G (2012) Hydrogeochemical characterization of contaminated groundwater in Patancheru industrial area, southern India. Environmental Monitoring and Assessment 184(6):3557-3576, doi:10.1007/s10661-011-2208-2

Revelle R (1941) Criteria for recognition of the sea water in ground‐waters. Eos, Transactions American Geophysical Union 22(3):593-597, doi: 10.1029/TR022i003p00593

Rosen L (1994) A study of the methodology with emphasis on Swedish conditions. Ground Water 32(2):278-285

Sharma S, Verma GK (2015) Inversion of electrical resistivity data: A review. World Academy of Science, Engineering and Technology, International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering 9(4):400-406

Shetkar RV and Mahesha A (2011) Tropical, seasonal river basin development, hydrogeological analysis. Journal of Hydrologic Engineering 289-291

Tiwari TN, Mishra MA (1985) A preliminary assignment of water quality index of major Indian rivers. Environmental Protection 5:276-279