ارزیابی عملکرد سیستم های منابع آب با استفاده از معیارهای اطمینان‌پذیری، برگشتپذیری و آسیب پذیری فازی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار /دانشکده مهندسی عمران، دانشگاه صنعتی اصفهان، اصفهان

2 دانشجوی دکترای مهندسی/ عمران، دانشکده مهندسی عمران، دانشکده مهندسی عمران، دانشگاه صنعتی اصفهان، اصفهان

چکیده

مقاله حاضر ضمن تبیین لزوم بازنگری در روش‍های موجود جهت تخمین معیارهای عملکرد سیستم‍های منابع آب شامل اطمینان‍پذیری، برگشت‍پذیری و آسیب‍پذیری، روشی جدید جهت مرتفع‍کردن معایب و اشکالات روش‍های کمی‌کردن این معیارها در روش‍های کلاسیک ارائه می‍دهد. اطمینان‍پذیری، برگشت‍پذیری و آسیب‍پذیری معیارهای بسیار پرکاربردی در ارزیابی عملکرد سیستم‍های منابع آب می‍باشند که در سه دهه اخیر در بسیاری تحقیقات مورد استفاده قرار گرفته‍اند. مطالعه حاضر نشان می‍دهد که روش‍های متداول جهت کمی‍کردن این معیارها، در مقادیر حدی (آستانه) از مقادیر مطلوب پارامتر مورد مطالعه مانند تأمین نیاز آبی، دارای عملکرد غیرقابل اعتماد و غیر قابل درکی نسبت به واقعیت موجود هستند. این نقطه ضعف در روش‍های قبلی با استفاده از یک مثال ساده تئوریک نشان داده شده‍است که بیان می‍کند این نقطه ضعف می‍تواند موجب تغییر مقادیر قابل درک از اطمینان‍پذیری، برگشت‍پذیری و آسیب‍پذیری در ارزیابی عملکرد سیستم‍های منابع آب شود؛ همچنین تخمین نادرست این معیارها باعث محاسبه نادرست و غیرقابل قبول شاخص پایداری برای یک سیستم منابع آب می‍شود. مطالعه حاضر روشی را جهت بهبود تخمین سه معیار عملکرد مذکور برای ارزیابی عملکرد سیستم‍های منابع آب توسعه می‌دهد. روابط جدید با استفاده از  مفهوم توابع عضویت در تئوری فازی و برپایه روابط قبلی جهت بهبود عملکرد معیارها توسعه داده شده‍است. حوضه آبریز زاینده‍رود به عنوان مطالعه موردی این تحقیق جهت مقایسه و بررسی نتایج روش جدید نسبت به روش‍‍های قبلی مورد استفاده قرار گرفته‍است. مقایسه نتایج روش فازی و روش‍های کلاسیک و جمع‍بندی آن‍ها به وسیله شاخص پایداری نشان می‍دهد که روش ارائه‍شده در تحقیق حاضر ضمن رفع اشکال روش‍های قبلی، در ارزیابی عملکرد بسیار مؤثر و کارآمد می‍باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating the Water Resource Systems Performance Using Fuzzy Reliability, Resilience and Vulnerability

نویسندگان [English]

  • H. R. Safavi 1
  • M. H. Gol Mohammadi 2
1 Associate Professor, Department of Civil Engineering, Isfahan University of Technology, Isfahan
2 PhD Candidate, Department of Civil Engineering, Isfahan University of Technology, Isfahan
چکیده [English]

This study highlights the need to improve the estimation of the water resources performance criteria such as reliability, resilience and vulnerability (RRV) regarding common approaches. The study also proposes a new technique to obviate disadvantages of common (classic) approaches. RRV criteria are very useful for evaluating performance of water resources system which are used in many researches in the last three decades. This study explains that common approaches of quantifying these estimators have unreliable performance in thresholds of desired values of parameters under investigation such as water supply. This weak point in previous approaches has been shown by an evident example, demonstrating that this problem could change exact values of reliability, resilience and vulnerability in evaluating the water resource system performance. This would also lead to incredible inaccuracy in evaluating the sustainability index of a water system. This study developed an approach to improve PRV performance criteria for water resource systems performance evaluation. The new relations are based on previous formulas with improvements in their structures using the concept of membership functions in fuzzy theory. The Zayandehrud basin has been used as a case study to compare and assess the new and previous approaches. Comparison of the results of the new proposed approach with those of the common approaches to estimate performance criteria as well as their summaries by sustainability index showed that the new approach is very effective and practical meanwhile eliminating disadvantages of common approach

کلیدواژه‌ها [English]

  • Water Resource System Performance Evaluation
  • Reliability
  • Resilience
  • vulnerability
  • Sustainability Index
  • Fuzzy Technique

Ashofteh, PS, Haddad OB, Akbari-Alashti H, Mariño MA (2014) Determination of irrigation allocation policy under climate change by genetic programming. Journal of Irrigation and Drainage Engineering, doi: 10.1061/(ASCE)IR.1943-4774.0000807, 04014059.

Boysen F (2002) An overview and evaluation of composite indices of development, Journal of Social Indicators Research 59:115-151.

Brown RM, McClellandNI, Deininger RA, O’ConnorMF (1972) A water quality index-crashing the psychological barrier, In Indicators of Environmental Quality,Plenum, NY.

DHI-WASY (2014) Integrated water resources management in Isfahan, Iran: Groundwater model for the Zayandehrud catchment, Isfahan Regional Water Company.

Danner CL, McKinney DC, Teasley R, Sandoval-Solis S (2006) Documentation and testing of the WEAP model for the Rio Grande/Bravo basin. Texas University at Austin, TX.

Dukhovny V, Sokolov V (2005) Integrated water resources management, experience, and lessons learned from Central Asia-towards the fourth world water forum. Inter-State Commission for Water Coordination in the Aral Sea Basin, Tashkent.

El-Baroudy I, Simonovic SP (2004) Fuzzy criteria for the evaluation of water resource systems performance. Water Resources Research, 40(10), W10503, doi:10.1029/2003WR002828.

Esty DC, Levy M, Srebotnjak T, De Sherbinin A (2005) Environmental sustainability index: benchmarking national environmental stewardship. New Haven: Yale Center for Environmental Law & Policy.

Fanai N, Burn DH (1997) Reversibility as a sustainability criterion for project selection. The International Journal of Sustainable Development & World Ecology 4(4):259-273.

Gohari A, Eslamian S, Mirchi A, Abedi-Koupaei J, Bavani AM, Madani K (2013) Water transfer as a solution to water shortage: a fix that can backfire. Journal of Hydrology 491:23-39.

Hajkowicz S (2006) Multi-attributed environmental index construction. Journal of Ecological economics, 57(1):122-139.

Hashimoto T, Stedinger JR, Loucks DP (1982) Reliability, resiliency and vulnerability criteria for water resources system performance evaluation. Water Resources Research 10(1):14–20.

Howmiller RP, Scott MA (1977) An environmental index based on relative abundance of oligochaete species. Journal (Water Pollution Control Federation), 809-815.

Inter3 (2013) IWRM in the Zayandehrud river basin: WMT report-unpublished data, Isfahan Water Board Company (In Persian).

IPCC (2007b) Intergovernmental panel on climate change, summary for policymakers in climate change 2007: impacts, adaptation and vulnerability, Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE, Eds., Cambridge University Press, Cambridge, UK.

Klemeš V, Srikanthan R, McMahon TA (1981) Long‐memory flow models in reservoir analysis: What is their practical value?. Water Resources Research 17(3):737-751.

Lane BA, Sandoval-Solis S, Porse EC (2014) Environmental flows in a human-dominated system: Integrated water management strategies for the Rio Grande/Bravo basin. River Research and Applications, DOI: 10.1002/rra.2804.

Lence BJ, Fürst J, Matheson SM (1997) Distributive fairness as a criterion for sustainability: evaluative measures and application to project selection. The International Journal of Sustainable Development & World Ecology, 4(4):245-258.

Loucks DP (1997) Quantifying trends in system sustainability. Hydrological Science Journal 42(4):513-530.

Loucks DP, van Beek E (2005) Water resources systems planning and management, United Nations Educational, Scientific and Cultural Organization (UNESCO), Paris, France.

Madani K, Mariño MA (2009) System dynamics analysis for managing Iran’s Zayandeh-Rud river basin. Journal of Water Resources Management 23(11):2163-2187.

Mamanpoush A, Miranzadeh M, Akbari M, Torabi M, Toomanian N, Murray-Rust H, Droogers P, Sally H, Gieske A (2000) Water management for sustainable irrigated agriculture in the Zayandeh Rud Basin, Esfahan Province, Iran. International Water Management Institute, No. H028239.

McMahon TA, Adebayo J, Sen-Lin Z (2006) Understanding performance measures of reservoirs. Journal of Hydrology, 324:359–382.

Mendoza VM, Villanuave EE, Adem J (1997) Vulnerability of basins and watersheds in Mexico to global climate change. Climate Research Journal, 9:139-145.

Milbrink G (1983) An improved environmental index based on the relative abundance of oligochaete species. Journal of Hydrobiology 102(2):89-97.

Molle F, Wester P (2009) River basin trajectories: societies, environments and development. International Water Management Institute (IWMI), Vol. 8, Chapter 09.

Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions on American Society of Agricultural and Biological Engineers, 50(3):885-900.

Moy WS, Cohon JL, Revelle CS (1986) A programming model for analysis of reliability, resilience and vulnerability of a water supply reservoir. Journal of Water Resources Research 22(4):2135–2141.

Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models Part I - A discussion of principles. Journal of Hydrology, 10:282-290.

Navid D (1989) International law of migratory species: the Ramsar convention. The Natural Resources Journal, 29:1001, 1989.

Palmer WC (1965) Meteorological drought. Weather Bureau, US Department of Commerce, Washington, DC, USA.

Ramsar Iran (1971) Convention on wetlands of international importance, especially as waterfowl habitat. UN Treaty Series.

Reiquam H (1972) Establishing priorities among environmental stresses. In Indicators of Environmental Quality: 71-82, Plenum, NY.

Safavi HR, Chakraei I, Kabiri-Samani A, Golmohammadi MH (2013) Optimal reservoir operation based on conjunctive use of surface water and groundwater using neuro-fuzzy systems, Water Resources Management, 27(12):4259-4275.

Safavi HR, Esfahani MK, Zamani AR (2014) Integrated index for assessment of vulnerability to drought, case study: Zayandehrood River Basin, Iran, Journal of Water Resources Management,28(6):1671-1688.

Safavi HR, Golmohammadi MH, Sandoval-Solis S (2015) Expert knowledge based modeling for integrated water resources planning and management in the Zayandehrud River Basin. Journal of Hydrology, 528:773-789.

Sally H, Salemi HR, Mamanpoush A (2000) An overview of the hydrology of the Zayandeh Rud Basin. International Water Management Institute, No. H028241.

Sandoval-Solis S (2011) Water planning and management for large scale river basins. Case of study: Rio Grande/Rio Bravo transboundary basin, Ph.D. Dissertation, University of Texas at Austin, Austin, TX.

Sandoval-Solis S, McKinney DC, Loucks DP (2011) Sustainability index for water resources planning and management. Journal of Water Resources Planning and Management, 137(5):381-390.

Sarang A, Vahedi A, Shamsai A (2008) How to quantify sustainable development: a risk-based approach to water quality management. Environmental management, 41(2):200-220.

Sarhadi A, Soltani S (2013) Determination of water requirements of the Gavkhuni wetland, Iran: A hydrological approach. Journal of Arid Environments, 98:27-40.

Steel RGD, Torrie JH (1960) Principles and procedures of statistics: with special reference to the biological sciences. McGraw-Hill, NY..

Sumathi S, Paneerselvam S (2010) Computational intelligence paradigms: theory and applications using MATLAB. CRC Press.

Takeuchi K (1998) Sustainable reservoir development and management (No. 251). International Association of Hydrological Sciences, Wallingford, UK.

Tavakoli, E (2011) Determination of monitoring criteria water resources for sustainability in Zayandeh-Rud river basin, MSc Thesis, Isfahan University of Technology, Isfahan, Iran (In Persian).

TCEQ-Texas Commission on Environmental Quality (2007) Water availability models: Rio Grande Basin, Austin, TX.

Vigerstøl KL(2003) Drought management in Mexico's Rio Bravo basin. Doctoral dissertation, University of Washington, Seattle, WA.

WHO-World Health Organization (2009) Summary and policy implications Vision 2030: the resilience of water supply and sanitation in the face of climate change. WHO Press.

Willmott CJ, Ackleson SG, Davis RE, Feddema JJ, Klink KM, Legates DR, O’Donnell J, Rowe CM (1985) Statistics for the evaluation and comparison of models. Geophysics Research Journal, 90:8995-9005.

WWRI-Isfahan University of Technology (IUT) (2014) IWRM in the Zayandehrud river basin: climate change report, Isfahan Water Board Company (In Persian).

Zadeh LA (1965) Fuzzy Sets. Information and Control, 8(3):338-353.

Zayandab Consulting (2008) Determination of resources and consumptions of water in the Zayandehrud river basin, Isfahan Water Board Company (in Persian).

Zongxue X, Jinno K, Kawamura A, Takesaki S, Ito K (1998) Performance risk analysis for Fukuoka water supply system. Journal of Water Resources Management, 12(1):13-30.