تحلیل عدم‌قطعیت حداکثر سیلاب محتمل حوضه سد بختیاری به علت عدم‌قطعیت در مقدار حداکثر بارش محتمل، دمای هوا و آب معادل برف اولیه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی منابع آب/ گروه هیدرولوژی و منابع آب، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز

2 استاد /گروه هیدرولوژی و منابع آب، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز

3 استادیار/ گروه هیدرولوژی و منابع آب، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز

چکیده

اطمینان و اعتبار سیل‌های حدی مخصوصا حداکثر سیلاب محتمل (PMF)، بدون در نظرگرفتن منابع عدم‌قطعیت در برآورد سیل نمی‌تواند تامین شود. متغیرهای ورودی در مدلهای بارش-رواناب شامل بارش، دمای هوا و آب معادل برف (SWE) اولیه از جمله منابع عدم‌قطعیت در پیش‌بینی و برآورد سیل هستند. در این مقاله از روش تئوری مجموعه فازی برای پخش عدم‌قطعیت مقدار PMP، دمای هوا و آب معادل برف اولیه در برآورد PMF در حوضه سد بختیاری در جنوب غربی ایران استفاده شده است. نتایج نشان می‌دهد که عدم‌قطعیت دبی اوج هیدروگراف PMF بعلت عدم‌قطعیت مقدار PMP بیشتر از عدم‌قطعیت حجم هیدروگراف PMF است. عدم‌قطعیت حجم هیدروگراف PMF بعلت عدم‌قطعیت مقدار دمای هوا و آب معادل برف اولیه بیشتر از عدم‌قطعیت دبی اوج هیدروگراف PMF است. بطوریکه عدم‌قطعیت دبی اوج هیدروگراف PMF بعلت عدم‌قطعیت در مقادیر PMP، دمای هوا و آب معادل برف اولیه به اندازه 10± درصد به ترتیب برابر با 2/10± ، 6/7± و 18/0± درصد است. همچنین عدم‌قطعیت حجم هیدروگراف PMF بعلت عدم‌قطعیت در مقدار PMP، دمای هوا و آب معادل برف اولیه به اندازه 10± درصد به ترتیب برابر با 8± ، 8/9± و 35/0± درصد است. بنابراین به منظور کاهش عدم‌قطعیت در برآورد PMF، باید به ترتیب در برآورد مقادیر PMP، دمای هوا و آب معادل برف اولیه دقت بیشتری کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Uncertainty Analysis of Probable Maximum Flood in Bakhtiari Dam Basin Due to Uncertainty in Probable Maximum Precipitation, Air Temperature and Initial Snow Water Equivalent

نویسندگان [English]

  • Hosein Fathian 1
  • Ali Mohammad AkhondAli 2
  • Mohammad Reza Sharifi 3
1 Ph.D. Candidate of Water Resources Engineering, Department of Hydrology and Water Resources, Collage of Water Sciences Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 Professor of Hydrology and Water Resources Engineering Department, Collage of Water Sciences Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 Assistant Professor of Hydrology and Water Resources Engineering Department, Collage of Water Sciences Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

The reliability and validity of extreme floods, especially the Probability Maximum Flood (PMF), cannot be ensured without considering the uncertainties in flood estimation. Input variables in rainfall-runoff models include precipitation, air temperature, and initial Snow Water Equivalent (SWE) are sources of uncertainty in flood forecasting and estimation. In this paper, the fuzzy set theory method is used to propagate uncertainty of PMP, air temperature and initial SWE for estimating PMF in Bakhtiari Dam Basin in southwestern Iran. The results show that the uncertainty of PMF hydrograph peak discharge due to uncertainty of PMP is more than the uncertainty of PMF hydrograph volume. The uncertainty of the PMF hydrograph volume due to the uncertainty of air temperature and initial SWE is more than the uncertainty of the PMF hydrograph peak discharge. So that the uncertainty of PMF hydrograph peak discharge due to uncertainty in PMP, air temperature and initial SWE equal to 10% were ±10.2%, ±7.6% and ±0.18% respectively. Also the uncertainty of PMF hydrograph volume due to uncertainty in PMP, air temperature and initial SWE equal to 10% were ±8.0%, ±9.8% and ±0.35% respectively. Therefore, in order to reduce the uncertainty in estimating PMF, it is necessary to be more careful in estimating PMP, air temperature and initial SWE values respectively.

کلیدواژه‌ها [English]

  • Input uncertainty
  • PMP
  • PMF
  • Air Temperature
  • Initial SWE
Beauchamp J, Leconte R, Trudel M, and Brissette F (2013) Estimation of the summer‐fall PMP and PMF of a northern watershed under a changed climate. Water Resources Research 49(6):3852-3862
Coxon G, Freer J, Westerberg IK, Wagener T, Woods R, Smith PJ (2015) A novel framework for discharge uncertainty quantification applied to 500 UK gauging stations. Water Resources Research 51(7):5531-5546
Fathian H, Sedghi H, Bostani F, Mousavi Jahromi H, and Manshori M (2011) Uncertainty analysis of amount, temporal and spatial distribution of precipitation in flood forecasting. Journal of Iran-Watershed Management Science & Engineering 4(13):1-14 (In Persian)
Gabellani S, Boni G, Ferraris L, Von Hardenberg J, Provenzale A (2007) Propagation of uncertainty from rainfall to runoff: A case study with a stochastic rainfall generator. Advances in Water Resources 30(10):2061-2071
Gangrade S, Kao SC, Naz BS, Rastogi D, Ashfaq M, Singh N, and Preston BL (2018) Sensitivity of probable maximum flood in a changing environment. Water Resources Research 54(6):3913-3936
Iran Power and Water Resources Development Company (2006) Review report of Probable Maximum Precipitation (PMP) studies, Bakhtiari Dam and power plant design. Iranian Water and Power Resources Development Company 175 p
Iran Power and Water Resources Development Company (2006) Review report of Probable Maximum Flood (PMF) studies, Bakhtiari Dam and power plant design. Iranian Water and Power Resources Development Company 110 p
Jothityangkoon C, Hirunteeyakul C, Boonrawd K, and Sivapalan M (2013) Assessing the impact of climate and land use changes on extreme floods in a large tropical catchment. Journal of Hydrology 490:88-105
Khorami M and Ghahraman B (2017) Uncertainty analysis of soil parameters in soil moisture profile uncertainty using fuzzy set theory. Iran-Water Resources Research 13(1):126-138 (In Persian)
Klein IM, Rousseau AN, Frigon A, Freudiger D, and Gagnon P (2016) Evaluation of probable maximum snow accumulation: Development of a methodology for climate change studies. Journal of hydrology 537:74-85
Kunkel KE, Karl TR, Easterling DR, Redmond K, Young J, Yin X, and Hennon P (2013) Probable maximum precipitation and climate change. Geophysical Research Letters 40(7):1402-1408
Maskey S and Price RK (2003) Uncertainty issues in flood forecasting. Flood Events: Are We Prepared? Proceeding of the OSIRIS Workshop, Berlin, 123-136
Maskey S, Guinot V, and Price RK (2004) Treatment of precipitation uncertainty in rainfall-runoff modelling: a fuzzy set approach. Advances in Water Resources 27(9):889-898
Micovic Z, Schaefer MG, and Taylor GH (2015) Uncertainty analysis for probable maximum precipitation estimates. Journal of Hydrology 521:360-373
Rastogi D, Kao SC, Ashfaq M, Mei R, Kabela ED, Gangrade S, Naz BS, Preston BL, Singh N, and Anantharaj VG (2017) Effects of climate change on probable maximum precipitation: A sensitivity study over the Alabama‐Coosa‐Tallapoosa River Basin. Journal of Geophysical Research: Atmospheres 122(9):4808-4828
Revelli R and Ridolfi L (2002) Fuzzy approach for analysis of pipe networks. Journal of Hydraulic Engineering 128(1):93-101
Rousseau AN, Klein IM, Freudiger D, Gagnon P, Frigon A, and Ratté-Fortin C (2014) Development of a methodology to evaluate probable maximum precipitation (PMP) under changing climate conditions: Application to southern Quebec, Canada. Journal of Hydrology 519:3094-3109
 Schulz K and Huwe B (1997) Water flow modeling in the unsaturated zone with imprecise parameters using a fuzzy approach. Journal of Hydrology 201(1-4):211-229
Stratz SA and Hossain F (2014) Probable maximum precipitation in a changing climate: Implications for dam design. Journal of Hydrologic Engineering 19(12):06014006
 Strauch M, Bernhofer C, Koide S, Volk M, Lorz C, and Makeschin F (2012) Using precipitation data ensemble for uncertainty analysis in SWAT streamflow simulation. Journal of Hydrology 414:413-424
Tanhapour M, Banihabib ME, and Roozbahany A (2018) Bayesian network model for the assessment of the effect of antecedent rainfall on debris flow forecasting In Alborz Zone of Iran. Iran-Water Resources Research 13(4):118-131(In Persian)
Vrugt JA, Ter Braak CJ, Clark MP, Hyman JM, and Robinson BA (2008) Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation. Water Resources Research 44(12)
Wang H, Wang C, Wang Y, Gao X, and Yu C (2017) Bayesian forecasting and uncertainty quantifying of stream flows using Metropolis–Hastings Markov Chain Monte Carlo algorithm. Journal of Hydrology 549:476-483
Zischg AP, Felder G, Weingartner R, Quinn N, Coxon G, Neal J, Freer J, and Bates P (2018) Effects of variability in probable maximum precipitation patterns on flood losses. Hydrology and Earth System Sciences 22(5):2759-2773