کاربرد روش تداخل سنجی و تصاویر سنجش از دوری رادار در برآورد عمق برف و آب قابل استحصال از آن در حوضۀ آبریز یامچی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 سنجش از دور و GIS، جغرافیا و برنامه ریزی، تبریز، تبریز،ایران

2 گروه سنجش ا زدور و GIS دانشگاه تبریز

چکیده

ذخیره برف در حوضه‌های کوهستانی از منابع آب مهم و قابل ‌اطمینان است. به دلیل شرایط سخت فیزیکی محیط‌های کوهستانی، امکان اندازه-گیری برف به صورت زمینی وجود ندارد؛ به‌همین دلیل، استفاده از سنجش ‌از دور با توجه به پوشش وسیع می‌تواند در شناسایی مناطق برفی روش مناسبی باشد. در پژوهش حاضر، با استفاده از تصاویر ماهواه‌ایLandsat 8 سطح پوشش برف برای حوضه آبریز یامچی از طریق شاخص NDSI و به‌وسیله پردازش شیءگرا بدست آمد و با داده‌های زمینی صحت سنجی شد که دقت کلی بالای 90 درصد را نمایش داد. برای محاسبه عمق برف منطقه مورد مطالعه نیز از تصاویر ماهواره‌ای Sentinel A1 و روش D-InSAR استقاده شد. با بررسی تصاویرLandsat 8 مشخص گردید که تصویر شهریور ماه فاقد برف می‌باشد به همین دلیل این تصویر به‌عنوان تصویر پایه برای تداخل‌سنجی انتخاب گردید و تمام تصاویر نسبت به این تصویر تداخل‌سنجی شده و نقشه عمق برف بدست آمد. نتایج حاصل با داده‌های زمینی صحت سنجی شده و ضرایب همبستگی بین داده‌های مشاهداتی و مقادیر برآورد شده عمق برف، 85 درصد به‌دست آمد. با اطمینان از دقت بالای نقشه‌های بدست آمده، حجم برف نیز از طریق نقشه‌های سطح و عمق برف، حاصل شد. با استفاده از همبستگی بین داده‌های عمق برف به‌دست آمده از روش تداخل سنجی تفاضلی راداری و آب معادل برف ایستگاه‌های زمینی، یک رابطه خطی درجه شش با ضریب همبستگی 87/0 محاسبه شد، و به این طریق، نقشه‌های عمق آب معادل برف نیز برای منطقه مورد مطالعه منتج گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of interferometric method and radar remote sensing images to estimate the depth of snow and water discharge, Case Study: (Yamchie Basin)

نویسندگان [English]

  • Hooshang Seifi 1
  • Bakhtiar Feizizadeh 2
1 Remote sensing & GIS, Geography and Planning, Tabriz, Tabriz, Iran
2 University of Tabriz, Department of GIS
چکیده [English]

Snow cover in mountainous basins is known as an important and reliable fresh water resource. Due to the physical conditions of the mountainous environments, it is believed that snow can measurement is still challenge based on traditional methods and techniques. In order to deal with this issue, remote sensing satellite images can be considered as efficient method for identifying snow covers and computing their depth and volume. Within the current research, the Landsat 8 satellite images were employed to detect snow cover surface for the Yamchi basin using NDSI indices and object based image analysis methods. The ground control points were applied to compute the accuracy of results while the overall accuracy was computed to be about 90%. In order to measure the snow cover depth and compute water discharge, the Sentinel A1 and D-InSAR satellite imagery were employed. In context of detection snow cover using Landsat 8 images, the satellite images for September indicated no snow cover for the study which accordingly employed as basic data for comparing against winter season satellite images and accordingly computing the snow cover and depth using the interferometry approaches. The results were verified by ground data.The correlation coefficients were computed to be about 85%. With confidence in the accuracy of the maps, the snow volume was also obtained through surface and snow depth maps. Accordingly, the correlation between snow depth of ground control points the obtained snows depth from differential radar interference were employed to compute water discharge of the study area.

کلیدواژه‌ها [English]

  • Snow depth
  • Snow Cover Surface
  • Sentinel A1
  • D-InSAR Method
  • Yamchi Basin
Almodarresi A, Hatami J, Sarkaregar A (2016) Computational physical properties of snow using differential radar interferometry and TerraSAR-X and MODIS. Remote Sensing and Geographic Information Systems in Natural Resources 7(2):59-76 (In Persian)

Ahmadi A, Khoramian A, Safavi HR (2015) Assessment of climate change impacts on snow-runoff processes a case study: Zayandehroud river basin. Iran-Water Resources Research 11(2):70-82 (In Persian)

Adhami S (2005) Application of GIS and geographic information system in snow covering, case study: Ajizhai basin. Master's Thesis, Tabriz University, Remote Sensing and GIS Group (In Persian)

Braunich H, Wu B, Kong JA (2000) Phase unwrapping of SAR interferograms after wavelet denoising. Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGRASS), Honolulu, Hawaii, New York: IEEE, pp 752-754

Dai K, Liu G, Li Z, Li T, Yu B, Wang X, Singleton A (2015) Extracting vertical displacement rates in shanghai (China) with multi-platform SAR images. Remote Sensing Journal 7(8):9542-9562

Engman E T, Gurney R J (1991) Remote sensing in hydrology. Chapman and Hall, pp 223

Evanse J, Kruse F (2013) Determination of snow depth retrieval using Ku-band interferometric synthetic aperture radar (insar). Remote Sensing 68(32):681-684

Feizizadeh B, Helali H (2009) Comparison of pixel-based, object-oriented and effective parameters in coverage / land use classification in west Azarbayejan province. Geographical Research 42(71):84-73 (In Persian)  

Feizizadeh B, Shahabi H, Seifi H (2016) Identification of susceptible zones of Urmia lake saline storms using fuzzy-object satellite processing. Managing Environmental Hazards (Extreme Risk Knowledge) 3(3):269-284 (In Persian)

Fattahi E, Noohi K, Delavar M (2009) Investigation of snow cover surface of southwestern basins of Iran in relation to climate signals. Quarterly Journal of Geographic Research 24(95):109-130 (In Persian)

Fooladvand E, Miryagoubzadeh M H, Esmaeili A (2015) Simulation of snow melt runoff using the SRM hydrological model using MODIS satellite image. First International Conference on Geosciences, Shiraz, Kharazmi High School of Science and Technology (In Persian)

Hasanpour Darvishi H, Ebrahimi H (2014) Effect of snow effect on runoff simulation in catchment area (Case study: Neyshabour catchment basin). Irrigation and Drainage Journal of Iran 8(4):864-857 (In Persian)

Kamali M, Hojam S, Vazifehdoust M (2011) Surface of snow cover and its effect on dryland wheat yield in Khorasan province. Water and Soil Journal (Agricultural Sciences and Technology) 125(6):1502-1494 (In Persian)

Leinss S, Wiesmann A, Lemmetyinen J, Hajnsek I (2015) Snow water equivalent of dry snow measured by differential interferometry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8(8):3773-3790

Liu Y, Li L, Yang J, Xi Ch, Hao J (2017) Estimating snow depth using multi-source data fusion based on the D-InSAR method and 3DVAR fusion algorithm. Remote Sensing 9(11):1-17

Miryagoubzadeh M, Ganbarpour M (2010) Investigation of snow cover maps from MODIS satellite images in modeling of snow melt runoff, Case study: Karaj Dam basin. Journal of Earth Sciences 19(76):141-148 (In Persian)

Mokhtari Motlag P, Javani B, Sharifan H (2013) Estimation of seasonal snow melt runoff using SRM model (case study: Ziarat basin in golestan province). First National Conference on Water and Agriculture Water Challenges, Isfahan, Iran National Irrigation and Drainage Association, Islamic Azad University, Khorasgan Branch (In Persian)

Nolin A, Liang S (2000) Progress in bidirectional reflectance modeling and applications for surface particulate media: snow and soils. Remote Sensing Reviews 18(6):307-342

Premelatha M (2001) Quality assessment of interferomefrically derived digital elevation models. Ph.D. Thesis, University of Nottingham, Nottingham

Raygani B (2005) Survey of snow cover surface changes and estimation of snowmelt runoff using MODIS satellite imagery in Zayandeh Rood Dam Watershed. Dissertation for Master Degree, Isfahan University of Technology (In Persian)

Rahnmounfar M, Serajean M, Rahmati M (2005) Use of radar interferometry in Bam earthquake and IZMIT earthquake study in Turkey. Geomatics conference 84, Mapping Organization

Shi J, Dozier J (2000) Estimation of snow water equivalence using SIR-C/x-SAR inferring snow depth and particle size. IEEE Transactions on Geoscience and Remote Sensing 38(6):2475-2488

Tasdigian M, Rahimzadegan M (2017) Evaluation and improvement of snow cover detection from MODIS images. Iran-Water Resources Research 13(1):163-177 (In Persian)