بررسی زمان ماندگاری آب‌های زیرزمینی (آبرفتی و کارستی) محدوده پل ذهاب با توجه به تغییرات زمانی و مکانی ترکیب ایزوتوپی (δ2H و δ18O ) نزولات جوی و آب‌های زیرزمینی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 عضو هیات علمی و سرپزست مرکز تحقیقات آبهای زیرزمینی/دانشگاه فردوسی مشهد

2 دانشگاه فردوسی مشهد

چکیده

دامنه تغییرات میانگین مقادیر ایزوتوپی آب‌های جوی محدوده پل‌ذهاب برای δ18O بین ‰ 9/2- و ‰ 6/6- و برای δ2H بین ‰ 4/14- و ‰ 6/31- به دست آمده است. خط ایزوتوپی آب جوی به دست آمده برای پل ذهاب (δ2H = 6.6*δ18O + 12.1) نشان دهنده دوتریوم مازاد1 بالا ‰) 1/12) بوده و مقادیر بالای دوتریوم مازاد آب باران در ایستگاه های هواشناسی سرپل ذهاب، قصر شیرین و کرند (بین ‰7/8 و ‰ 9/20) تاییدی بر تاثیر بخار آب اتمسفر با منشا مدیترانه‌ای باشد. ترکیب ایزوتوپی منابع آب زیرزمینی محدوده پل ذهاب نسبت به نمونه‌های آب باران دارای دامنه تغییرات کمتری بوده و مقادیر میانگین ترکیب ایزوتوپی منابع آب زیرزمینی (آبرفتی و کارستی) برای δ18O در گستره بین ‰ 3/5- و ‰ 8/6- و برای δ2H در محدوده بین ‰ 2/29- و ‰ 6/36- قرار می‌گیرد. به‌طور کلی ترکیب ایزوتوپی (δ2H وδ18O) آب‌های کارستی در محدوده پل ذهاب تغییرات فصلی اندکی دارد و نشان‌دهنده وجود زمان کافی برای اختلاط آب‌های نفوذی با آب‌های بخش اشباع و زمان ماندگاری بالای آب در سازند می باشد. کمترین تغییرات فصلی ترکیب ایزوتوپی در بزرگترین چشمه‌های کارستی منطقه از جمله سرآبگرم، سرآب قلعه‌شاهین، چشمه ریجاب و سراب قره‌بلاغ دیده می‌شود. به همین سبب آب این چشمه‌ها دارای بیشترین زماندگاری در سازند بوده و در نتیجه سن نسبی آب چشمه‌ بیشتر است. پیرامون سرآب کارستی ماراب، توسعه مجاری کارستی بیشتر و سرعت حرکت آب بیشتر و در نتیجه زمان ماندگاری و سن نسبی آب کمتر می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of groundwater residence time (alluvial and karst) in Pol-e-Zahab study area due to the spatiotemporal varations of isotopic composition (δ2H , δ18O) of rainfall and groundwater

نویسندگان [English]

  • Hossein Mohammadzadeh 1
  • hamideh Amiri 2
1 Head of Groundwater Research Center (GRC)/Ferdowsi University of Mashhad
2 Ferdosi university of Mashhad
چکیده [English]

In this research, we obtained mean values of -2.9‰ to -6.6 ‰ for δ18O and -14.4 ‰ to -31.6‰ for δ2H for precipitations of Pol-e-Zahab area. The Pol-e-Zahab meteoric water line (δ2H = 6.6*δ18O + 12.1) represents high deuterium excess (12.1‰) and elevated values of d-excess of rainwaters from SarpoleZahab, Qasr-e Shirin and Kerend weather stations (between 8.7‰ and 20.9‰) confirms the impact of Mediterranean atmospheric water vapor. In Pole Zahab study area, the isotopic composition of the ground water resources has less variation than that of rainwaters. The mean values of the isotopic composition for the groundwater (alluvial and karst) ranges between -3.5 ‰ and -8.6 ‰ for δ18O and between -2.29 ‰ and -6.36 ‰ for δ2H. In general, karst water isotopic composition (δ18O and δ2H) in the study area has less seasonal variations, which indicates the existance of sufficient time for mixing of infiltrated water with water in saturated zone and in turn indicate high groundwater residence time in formation. The least isotopic seasonal variations were observed in largest karstic springs of the region, including Srabgrm, Ghaleshahin, Gharebolagh and Ryjab springs. Consequently, the water of these springs have the greatest residence time in formation and in turn high relative age of water. Around Marab karstic spring, development of karst channels and faster flowing of groundwater resulted in less residence time and low relative age of water.

کلیدواژه‌ها [English]

  • Oxygen-18
  • Deuterium
  • Meteoric Water Line
  • Karst Springs
  • Residence time
Ashjari J, Raeisi E (2006) Influences of anticlinal structure on regional flow, Zagros, Iran. Journal of cave and karst studies the National Speleological Society Bulletin 68(3):118-129

Blasch K, Bryson J (2007) Distinguishing sources of ground water recharge by using δ2H and δ18O. Groundwater 45:294-308

Craig H (1961) Isotopic variation in meteoric waters. Science, N.Y. 133: 1702-1703

Criss R, Fernandes S, Winston W (2001) Isotopic, geochemical and biological tracing of the source of an impacted karst spring, Weldon Spring, Missouri. Environmental Forensics 2:99-103

Cui B, Li X (2015) Stable isotopes reveal sources of precipitation in the Qinghai Lake Basin of the northeastern Tibetan Plateau. Journal of Science of the Total Environment 527-528:26-37

Delbart C, Barbecot F, Valdes D, Tognelli A, Fourre E, Purtschert R, Couchoux L, Jean- Baptiste P (2014) Investigation of young water inflow in karst aquifers using SF6–CFC–3H/He–85Kr–39Ar and stable isotope components. Applied Geochemistry 2014:1-12

Frisbee M, Wilson J, Gomez J, Phillips F, Campbell A (2013) Are we missing the tail (and the tale) of residence time distributions in watersheds? Geophysical Research Letters 40:4633-4637

Gat JR, Carmi I (1970) Evolution in the isotopic composition of atmospheric waters in the Mediterranean Sea area. Journal of Geophysical Research 75:3039-3048

Han L, Hacker P, Groning M (2007) Residence times and age distributions of spring waters at the Semmering catchment area, Eastern Austria, as inferred from tritium, CFCs and stable isotopes. Isotopes in Environmental and Health Studies 43:31-50

Hoefs J (2004) Stable isotope geochemistry. University Center Press, 330p (In Persian)

Kabeya N, Katsuyama M, Kawasaki M, Ohte N, Sugimoto A (2007) Estimation of mean residence times of subsurface waters using seasonal variation in deuterium excess in a small headwater catchment in Japan. Hydrological Processes 21:308-322

Karimi H (2007) Physicochemical differences reasons of the Alvand basin’s main karst springs. The Conference on Water Resources of Kermanshah Region, Kermanshah Regional Water Authority: 233-245

Karimi H, Ashjari J (2010) Periodic breakthrough curve of tracer dye in the Gelodareh Spring, Zagros, Iran. Journal of Cave and Karst Science 36:5-10

Karimi H, Raeisi E, Bakalowicz M (2004) Characterising the main karst aquifers of the Alvand basin, Northwest of Zagros, Iran, by a hydrogeochemical approach. Journal of Hydrogeology 13:787-799

Karimi Vardanjani H (2010) Karst hydrogeology: concepts & methods. Shiraz Eram Press, 414p (In Persian)

Katz B, Chelette A, Pratt T (2004) Use of chemical and isotopic tracers to assess nitrate contamination and ground-water age, Woodville Karst Plain, USA. Journal of Hydrology 289:36-61

Long A, Putnam L (2009) Age-distribution estimation for karst groundwater: Issues of parameterization and complexity in inverse modeling by convolution. Journal of Hydrology 376:579-588

McCallum J, Engdahl N, Ginn T, Cook P (2014) Nonparametric estimation of groundwater residence time distributions: What can environmental tracer data tell us about groundwater residence time? Water Resources Research 50:2022-2038

Mohammadzadeh H, Aravena R (2015) Investigating the origin and interaction between karstic and alluvial aquifers in NW of Zagros Mountain Range, Iran, using isotopic and geochemical tools. Procedia Earth and Planetary Science 13:256-260

Mohammadzadeh H, Amiri H (2016) Isotopic composition (δ2H & δ18O) of karstic water in Pol-e- Zahab study area. The 2nd National Conference on Aplication of Stabl Isotopes, Mashhad, 2016, Iran (In Persian)

Mortazavi M (2011) Semi-detailed studies of 12 study areas in Kermanshah Project (sixth volume: Hydrogeology and hydrogeoshemistry report of Pol-e-Zahab study area) (In Persian)

Murillo R, Birkel C, Welsh K, Esquivel G, Corrales J, Boll J, Araguas LJ (2016) Key drivers controlling stable isotope variations in daily precipitation of Costa Rica: Caribbean Sea versus Eastern Pacific Ocean moisture sources. Journal of Quaternary Science Reviews 131:250-261

Osati Kh, Koeniger P, Salajegheh A, Mahdavi M, Chapi K, Malekian A (2014) Spatiotemporal patterns of stable isotopes and hydrochemistry in springs and river flow of the upper Karkheh River Basin, Iran. Isotopes in Environmental and Health Studies, 2014:1-15

Ozyurt N, Lutz H, Hunjak T, Mance D, Roller-Lutz Z (2014) Characterization of the Gacka River basin karst aquifer (Croatia): Hydrochemistry, stable isotopes and tritium-based mean residence times. Journal of Science of the Total Environment 487:245-254

Pavlovskiy‌‌L, Selle B (2014) Integrating hydrogeochemical, hydrogeological, and environmental tracer data to understand groundwater flow for a karstified aquifer system. Ground water 1:156-65

Plummer L, Busenberg E, McConella J, Drenkard S, Schlosser P, Michel R (1998) Flow of river water into a Karstic limestone aquifer. 1. Tracing the young fraction in groundwater mixtures in the Upper Floridan Aquifer near Valdosta, Georgia. Applied Geochemistry 13:995-1015

Raeisi E (2004) Semi-detailed project karst basin Kermanshah Alvand (The third volume of report groundwater and zones of karst basin Alvand). Shiraz University (In Persian)

Rezaeei S, Sahabi F, Memarian H (2012) Investigation of source H2S in Nosood tunnel (west of      Kermanshah). Journal of Engineering Mine 15(7):1-14 (In Persian)

Sharp Z (2007) Principles of stable isotope geochemistry. Farhikhtegan Alavi Press, 606p (In Persian)

Skelton A, Andren M, Kristmannsdottir H, Stockmann G, Morth C, Sveinbjornsdottir A, Kockum I (2014) Changes in groundwater chemistry before two consecutive earthquakes in Iceland. Journal of Nature Geoscience 7:752-756

Yuce G (2005) Determination of the recharge area and salinization degree of karst springs in the Lamas Basin (Turkey). Isotopes in Environmental and Health Studies 41:391-404