شبیه‌سازی و مقایسه‌ی تبخیر و تعرق پتانسیل به روش‌های شبکه عصبی مصنوعی، نروفازی ودرخت تصمیم‌گیریM5 (مطالعه موردی؛ ایستگاه سینوپتیک شیراز )

نوع مقاله: یادداشت فنی (5 صفحه)

نویسندگان

1 دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز

2 دانشگاه شهید چمران اهواز

3 دانشگاه کشاورزی و منابع طبیعی خوزستان

چکیده

تخمین صحیح تبخیر‌ و تعرق در طراحی، مدیریت سیستم‌های آبیاری و زهکشی از اهمیت زیادی برخوردار است. یکی از روش‌های تخمین تبخیر و تعرق، که در حل این مسائل و پیش‌بینی آن کاربرد زیادی دارد، روش‌های نروفازی (ANFIS)، شبکه‌های عصبی مصنوعی (ANNs) و درخت تصمیم‌گیری M5 می‌باشند. هدف از این تحقیق، بررسی کارایی روش‌های مذکور در برآورد تبخیر و تعرق مرجع در ایستگاه هواشناسی شیراز می‌باشد، بدین منظور داده‌های هواشناسی روزانه 5 ساله ایستگاه مذکور به‌عنوان ورودی مدل‌ها انتخاب شدند. برای اجرای مدل شبکه عصبی مصنوعی، مدل نرو فازی و درخت تصمیم‌گیری M5 به‌ترتیب از نرم افزارهای Qnet2000، MATLAB و WEKAاستفاده گردید. جهت ارزیابی نتایج مدل‌های ذکر شده ریشه میانگین مربعات خطا (RMSE)، ضریب تعیین (R2) و معیار میانگین قدرمطلق خطای نسبی (MAE) استفاده شد. نتایج حاصل از مدل شبکه عصبی مصنوعی و مدل انفیس به کمک شاخص های آماری R2، RMSEو MAEبه ترتیب برابر با 999/0 ، 0009/0و 00000139/0- و 999/0، 001855/0و 00119/0- به‌دست آمد، که نشان از دقت بالای هر دو مدل در شبیه سازی دارد. هم‌چنین مقدار ضریب همبستگیR2 ،RMSE و MAE مدل درخت تصمیم‌گیری بترتیب برابر 717/0 ، 1088/0 و 0387/0 محاسبه شدند که نشان دهنده‌ی کارایی مناسب مدل درختی M5 در پیش‌بینی میزان تبخیر و تعرق مرجع است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation and Comparison of Potential Evapotranspiration by Artificial Neural Networks, ANFIS (Fuzzy Neural Network) and Decision Making M5 (Case Study; Synaptic Station of Shiraz)

نویسندگان [English]

  • Elaheh Zorati pur 1
  • Lamia Neisi 1
  • Azam Bazaz 1
  • Amin Zoratipur 3
1 Faculty of Water Science Engineering, Shahid Chamran University of Ahvaz
3 Ramin Agriculture Sciences and Natural Resources of Khuzestan University
چکیده [English]

The proper estimation of evapotranspiration in designing, managing irrigation and drainage systems is very important. One of the methods of estimation of evapotranspiration, which is widely used in solving these problems and its prediction, are Neuro-Fuzzy Methods (ANFIS), Artificial Neural Networks (ANNs) and decision making tree M5. The purpose of this study was to evaluate the efficiency of the mentioned methods in estimating the reference evapotranspiration in the Shiraz meteorological station. For this purpose, the 5 yearly climatic data of the station were selected as inputs of the models. To implement artificial neural network model, Nero fuzzy model and decision tree M5 were used respectively from Qnet2000, MATLAB and WEKA software. In order to evaluate the results of these models, the mean squared error (RMSE), coefficient of determination (R2) and the criterion of the mean power of relative error (MAE) were used. The results of Artificial Neural Network model and ANFIS model with the help of statistical indices R2, RMSE and MAE were 0.0999, 0.099, 0.0500 and 0.0999, 0.051, and0.01119, respectively the accuracy of both models in simulation is high. Also, the correlation coefficient (R2), RMSE and MAE of decision tree model were calculated to be 0.7064, 0.0935 and 0.0414 respectively, which indicates the proper performance of the M5 tree model in predicting the reference evapotranspiration rate.

کلیدواژه‌ها [English]

  • Fuzzy Neural Network
  • Reference Evapotranspiration
  • Artificial Neural Network
  • Decision making tree
Abedi Koupai J, Amiri MJ, Eslamian SS (2009) Comparison of artificial neural network and physically based models for estimating of reference evapotranspiration in greenhouse. Australian Journal of Basic and Applied Sciences 3(3):2528-2535 (In Persian)

Behnia M, Akbari Valani H, Bameri M, Jabalbarezi B, Eskandari Damaneh H (2017) Potential assessment of ANNs and Adaptive Neuro Fuzzy Inference Systems (ANFIS) for simulating soil temperature at different soil profile depths. International Journal of Advanced Biological and Biomedical Research 6(1):416-423

Ghatfan A, Ammar Badia Y H and Alaa A S (2017) Estimation of reference evapotranspiration based on only temperature data using artificial neural network. American Journal of Innovative Research and Applied Sciences 157-162

Hosseini SMR, Ganji Khoram Del N, Farahani AH (2016) Estimating daily evapotranspiration by M5 decision tree and artificial neural network. Journal of Applied Research of Water Sciences 3(2):35-44 (In Persian)

Khoshnevisan B, Rafiee S, Omid M, Mousazadeh H (2014) Development of an intelligent system based on ANFIS for predicting wheat grain yield on the basis of energy inputs. Information Processing in Agriculture 14-22

Mohammadpur S, Rouhani H, Ghorbani Vaghei H, Seyediyan M, Fath Abadi A (2016) Modeling of sediment concentration due to elasticity of sharps using neuro-fuzzy system in semi-arid region. Iranian Natural Resources Journal Posture and Watershed Management 70(1) (In Persian)

Mosaedi A, Ghobayi Sogh M (2011) Estimation of daily evaporation from evaporation pan using a nerve-fuzzy comparative inference system. Iran Water Investigation Journal 5(8):170-161

Piri J, Ansari H (2012) Daily pan evaporation modelling with ANFIS and NNARX. Iran Agricultural Research Printed in the Islamic Republic of Iran Shiraz University 311(2):51-64 (In Persian)

Sameti M, Ghahraman N, Ghorbani KH (2013) Application of M5 model for estimation of reference evapotranspiration at stations in Shiraz and Kermanshah. Journal of Water Research in Agriculture 27(3):289-298 (In Persian)

Shabani A, Sepaskhah AR, Bahrami M, Razaghi F (2017) Neural network method and computational methods for more accurate estimation of reference evapotranspiration. Iran-Water Resources Research 13(1):152-162 (In Persian)

Sharifiyan H, Ghorbani KH (2014) Improve the estimation of potential evapotranspiration using the correction coefficient using the model M5 decision tree. Journal of Irrigation and Drainage 8(1):53-61 (In Persian)

Terzi Ö (2007) Data mining approach for estimation evaporation from free water surface. Applied Sciences 7(4):593-596

Zorati Pur A (2016) Comparison of the efficiency of neuro-fuzz method, artificial neural network and statistical models in estimating the suspended sediment of the river (Upstream of Taleghan plain). Journal of Rang and Watershed Management (Natural Resources of Iran) 69(1):65-78 (In Persian)