تعیین مناطق همگن هیدرولوژیکی در غرب حوضه هامون-جازموریان.

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه آبخیزداری/دانشکده منابع طبیعی/دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 عضو هیات علمی دانشگاه علوم کشاورزی و منابع طبیعی ساری

3 هیات علمی دانشگاه علوم کشاورزی و منابع طبیعی ساری

4 دانشگاه تهران

چکیده

خصوصیات گسترده هیدرولوژیکی در دسترس (داده های بارش، دما، جریان و مشخصات فیزیوگرافی حوضه ها) می توانند برای استخراج حوضه های مشابه هیدرولوژیکی مورد استفاده قرار گیرند. در این تحقیق از یک الگوریتم خوشه بندی در روش تحلیل خوشه ای به عنوان یک روش جدید و کارامد، برای گروه بندی حوضه های آبخیز به چندین گروه یا خوشه استفاده شد. به منظور درک تشابه هیدرولوژیکی از 28 ویژگی (توصیف‌گر) موقعیت جغرافیایی، فیزیوگرافی، اقلیمی و کاربری اراضی مربوط به 15 حوضه با خصوصیات ناهمگن واقع در بخش غربی حوضه هامون-جازموریان استفاده شد. در محیط نرم افزار RStudio با استفاده از الگوریتم PCA مولفه ها و ویژگی های اصلی تعیین، سپس تعداد خوشه های بهینه با معیار دیویس-بولدین مشخص و با الگوریتم k-means حوضه ها به کلاس های همگن خوشه بندی گردیدند.
نتایج نشان داد که ویژگی های عرض جغرافیایی مرکزثقل، مساحت، طول رودخانه اصلی، ارتفاع ایستگاه آبسنجی، شیب و درصد مساحت مراتع فقیر به عنوان ویژگی های اصلی از بین 28 ویژگی می باشند، همچنین معیار دیویس-بولدین برای تعداد خوشه های برابر با 3، مقدار 2/46 بدست آمد که مبین تعداد خوشه ها در الگوریتم k-means می باشد. پس از خوشه بندی حوضه ها مشخص گردید که اکثر حوضه های موجود در خوشه های یکسان از نظر مکانی در مجاورت یکدیگر قرار دارند. نتایج حاصل از این تحقیق ما را قادر به تفسیر رفتار هیدرولوژیکی منطقه مطالعاتی برای اهدافی نظیر تعمیم دهی جریان در حوضه های فاقد آمار این منطقه و تحلیل فراوانی منطقه ای سیلاب می سازد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of Hydrological Homogenous Regions in the West of Hamoun-Jazmourian River Basin

نویسندگان [English]

  • Afshin Jahanshahi 1
  • Kaka Shahedi 2
  • Karim Solaimani 3
  • Alireza Moghaddam Nia 4
1 Watershed Management/Natural Resources/Sari Agricultural Sciences and Natural Resources University
2 Watershed Management, Natural Resources
3 Watershed Management, Natural Resources
4 Watershed Management, Natural Resources
چکیده [English]

Extensive available hydrological characteristics (precipitation, temperature, streamflow data and physiographic attributes of catchments) can be used to extract hydrological similar catchments. In this research cluster analysis as a new and effective method, was used for grouping catchments into several groups or clusters. In order to understanding the hydrologic similarity, 28 characteristics (descriptors) of location, physiographic, climatic and land use of 15 catchments with heterogeneous characteristics located in the western part of the Hamoun-Jazmourian river basin were used. Selecting of characteristics were done based on the hydrological response specification which provided insight into the hydrologic performance of the catchments. In RStudio software, using PCA algorithm, the components and main characteristics were extracted, then the number of optimum clusters with the Davies-Bouldin criterion was determined and the clustering of the catchments into homogenous classes was performed using k-means algorithm. The results showed that the latitude of gravity center, area, length of main river, height of hydrometric gauge, slope and percentage of poor rangelands are as the main attributes from 28 attributes, also, the Davies-Bouldin criterion was 2.46 for the number of clusters equal to 3, which indicates the number of clusters in the k-means algorithm. After clustering the catchments, it was determined that most of the catchments in the same clusters are located in the vicinity of each other. The results of this study enable us to interpret the hydrologic behavior in the study area for purposes such as streamflow regionalization in ungauged catchments of this region and regional flood frequency analysis.

کلیدواژه‌ها [English]

  • Clustering
  • K-means Algorithm
  • PCA Algorithm
  • Davies-Bouldin criterion
Acreman MC, Sinclair CD (1986) Classification of drainage basins according to their physical characteristics, an application for flood frequency analysis in Scotland. Journal of Hydrology 84(3-4):365-380

Aguado D, Montoya T, Borras L, Seco A, Ferrer J (2008) Using SOM and PCA for analysing and interpreting data from a P-removal SBR. Engineering Applications of Artificial Intelligence 21(6):919-930

Ataei H, Shiran M (2011) Identifying homogeneous hydrological basins base on effective geomorphologic variants on flood by cluster analysis Introduction. Geography and Environmental Planning Journal 42(2):17-20 (In Persian)

Beven KJ (2000) Uniqueness of place and process representations in hydrological modelling. Hydrology and Earth System Science 4:203-213

Bloschl G, Sivapalan M, Wagener T, Viglione A, Savenije H (2013) Runoff prediction in ungauged basins. Synthesis across Processes, Places and Scales, Cambridge University Press, 492p

Bulygina N, McIntyre N, Howard W (2011) Bayesian conditioning of a rainfall-runoff model for predicting flows in ungauged catchments and under land use changes. Water Resources Research 47(2):1-13

Burn DH, Goel NK (2000) The formation of groups for regional flood frequency analysis. Hydrological Sciences Journal 45(1):97-112

Chirico GB, Western AW, Grayson RB, Bloschl G (2005) On the definition of the flow width for calculating specific catchment area patterns from gridded elevation data. Hydrological Processes 19(13):2539-2556

Darabi H, Solaimani K, Shahedi K, Miryaghubzadeh MH (2012) Sub-Watersheds classification based on morphometric parameters using cluster analysis in Po-Doab Shazand Watershed. Journal of Water and Soil Science 22(4):199-211 (In Persian)

Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence 1(2):224-227

Dooge J C I (1986) Looking for hydrologic laws. Water Resources Research 22(9):46-58

Ghabaei Sough M, Zareh Abyaneh H, Mosaedi A (2017) Development of ADI, the aggregate drought index, based on principle component analysis for monitoring agricultural drought in Golestan Province, Iran. Iran-Water Resources Research 13(2):56-73 (In Persian)

Goswami M, O’Connor KM, Bhattarai KP (2007) Development of regionalization procedures using a multi-model approach for flow simulation in an ungauged catchment. Journal of Hydrology 333(2-4):517-531

Götzinger J, Bárdossy A (2007) Comparison of four regionalization methods for a distributed hydrological model. Journal of Hydrology 333:374-384

Hartigan JA, Wong MA (1979) Algorithm AS 136: A K-means clustering algorithm. Applied Statistics 28:100-108

Haykin S (1998) Neural networks: a comprehensive foundation. 2nd edition Prentice Hall, 823p

Hoshyarmanesh H, Farhadi, M, Hoshyarmanesh A, Jafarian N (2013) Hierarchical clustering and K-means in R, SAS and MATLAB softwares. Iranian Journal of Official Statistics Studies 24(2):227-240 (In Persian)

Iran Space Agency (2016) Iran landuse map. isa.ir/content/542/

Jencso KG, McGlynn BL (2011) Hierarchical controls on runoff generation: topographically driven hydrologic connectivity, geology, and vegetation. Water Resources Research 47(11):1-16

Jencso KG, McGlynn BL, Gooseff MN, Bencala KE, Wondzell SM (2010) Hillslope hydrologic connectivity controls riparian groundwater turnover: implications of catchment structure for riparian buffering and stream water sources. Water Resources Research 46(10):1-18

Jingyi Z, Hall MJ (2004) Regional flood frequency analysis for the GanMing river basin in China. Journal of Hydrology 296(1-4):98-117

Kokkonen TS, Jakeman AJ, Young PC, Koivusalo HJ (2003) Predicting daily flows in ungauged catchments: model regionalization from catchment descriptors at the Coweeta Hydrologic Laboratory, North Carolina. Hydrological Processes 17(11):2219-2238

Li Q, Li Z, Zhu Y, Deng Y, Zhang K, Yao Ch (2018) Hydrological regionalisation based on available hydrological information for runoff prediction at catchment scale. Proceeding of the International Association of Hydrological Sciences (Proc. IAHS) 379:13-19

MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, 1:281-297

McMillan H K, Clark MP, Bowden WB, Duncan M, Woods R.A (2010) Hydrological field data from a modeler’s perspective: Part 1. Diagnostic tests for model structure. Hydrological Processes 25:511-522

Mehri S, Mostafazadeh R, Esmali-Ouri A, Ghorbani A (2016) Watershed grouping based on effective parameters on base flow using different clustering algorithms in Ardabil Province. Extension and Development of Watershed Management 4(15):30-40 (In Persian)

Merz R, Bloschl G (2004) Regionalisation of catchment model parameters. Journal of Hydrology 287(1-4):95-123

Ministry of Energy (2002) A comprehensive plan for separation of plains in Iran. Technical Report and Maps (In Persian)

Mohammadalipour N, Droudi F (2010) Information clustering. Journal of National studies on librarianship and Information 82:160-185 (In Persian)

Mwakalila S (2003) Estimation of streamflows of ungauged catchments for river basin management. Physics and Chemistry of the Earth 28:935-942

Ogunkoya O (1988) Towards a delimitation of southwestern Nigeria into hydrological regions. Journal of Hydrology 99(1-2):165-177

Oudin L, Andreassian V, Perrin C, Michel C, Le Moine N (2008) Spatial proximity, physical similarity, regression and ungauged catchments: A comparison of regionalization approaches based on 913 French catchments. Water Resources Research 44(3):1-15

Parajka J, Merz R, Blöschl G (2005) A comparison of regionalisation methods for catchment model parameters. Hydrology and Earth System Science 9(3):157-171

Rao AR, Srinivas VV (2008) Regionalization of watersheds: An approach based on cluster analysis. Springer Publisher, 248p

Ratnam KN, Srivastava YK, Rao VV, Amminedu E, Murthy KSR (2005) Check dam positioning by prioritization of micro-watersheds using SYI model and morphometric analysis - remote sensing and GIS perspective. Journal of the Indian Society of Remote Sensing 33:25-38

Razavi T (2014) Streamflow estimation in ungauged basins using regionalization methods. Ph.D. Thesis, School of Civil Engineering, McMaster University, 200p

Razavi T, Coulibaly P (2013) Classification of Ontario watersheds based on physical attributes and streamflow series. Journal of Hydrology 493:81-94

Razavi T, Coulibaly P (2016) An evaluation of regionalization and watershed classification schemes for continuous daily streamflow prediction in ungauged watersheds. Canadian Water Resources Journal 42(1):2-20

Rezaei A (2011) Regional analysis of annual discharge with different return periods in Sefidroud dam subbasins. 18(1):241-246 (In Persian)

Samuel J, Coulibaly P, Metcalfe R A (2011) Estimation of continuous streamflow in Ontario ungauged basins: comparison of regionalization methods. Journal of Hydrologic Engineering 16(5):447-459

Sarhadi A, Soltani S, Modarres R (2012) Probabilistic flood inundation mapping of ungauged rivers: Linking GIS techniques and frequency analysis. Journal of Hydrology 458-459:68-86

Sarhadi A (2008) Incorporating RS & GIS techniques and frequency analysis models for flood inundation study at JIROFT vicinity. M.Sc. Thesis, School of Civil Engineering, Isfahan University of Technology (In Persian)

Segane H, Tollner EW, Mohamoud YM, Rasmussen TC, Dowd JF (2012) Advances in variable selection methods II: Effect of variable selection method on classification of hydrologically similar watersheds in three Mid-Atlantic ecoregions. Journal of Hydrology 438-439:26-38

Shahsavan R, Ahani A, Mousavi Nadoushani SS, Moridi A (2015) Recognition of homogenous regions using k-means partitional cluster analysis method based on second-order l-moment (Case study: Roodbar Dam and Bakhtiari Dam Basins). Iran-Water Resources Research 10(3):99-103 (In Persian)

Srinivasa K, Nagesh D (2011) Classification of microwatersheds based on morphological characteristics. Journal of Hydro-Environment Research 5:101-109

Swicz K, Wagener T, Sivapalan M, Troch PA, Carrillo G (2011) Catchment classification: empirical analysis of hydrologic similarity based on catchment function in the eastern USA. Hydrology and Earth System Science 15:2895-2911

Viviroli D, Siebert J (2015) Can a regionalized model parametrization be improved with a limited number of runoff measurements?. Journal of Hydrology 529(1):49-61

Wagener T, Sivapalan M, Troch PA, Woods RA (2007) Catchment classification and hydrologic similarity. Geography Compass 1(4):901-931

Water Resources Investigation (WRI) Consulting Engineering Company (2016) Comprehensive assessment of water resources and balance: Hamoun-Jazmourian River Basin. Technical Report (in Persian)

Zareh Chahouki MA (2014) Data analysis in natural resources researches using SPSS software. Jahad Daneshgahi of Tehran University press, 312p (In Persian)