شبیه سازی رواناب در حوضه بالادست هلمند افغانستان با استفاده از واسنجی چندهدفه و مدل مفهومی FLEX

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه زابل

2 گروه مهندسی آب، دانشگاه زابل

3 گروه علوم و مهندسی آب دانشکده کشاورزی دانشگاه بیرجند- بیرجند- ایران

4 دانشگاه تربیت مدرس، گروه مهندسی منابع آب

چکیده

رودخانه هیرمند اصلی‌ترین زهکش نیمه جنوبی افغانستان بوده و تأثیر به سزایی در حیات اقتصادی‌- ‌اجتماعی منطقه سیستان دارد. در راستای ارزیابی پتانسیل آبی رودخانه هیرمند در طولانی مدت نیاز به استفاده از مدل بارش رواناب می باشد. هدف از این تحقیق شبیه‌سازی رواناب روزانه حوضه بالادست هلمند با استفاده از مدل مفهومی FLEX در ترکیب با بهینه‌سازی چندهدفه بوده که در سایر تحقیقات پیشین مورد توجه نبوده است. بنابراین در ابتدا مدل به صورت یکپارچه با درنظر گرفتن یک تابع هدف و سپس به صورت نیمه توزیعی و افزودن لگاریتم جریان به تابع هدف ارزیابی گردید. نتایج پژوهش نشان دهنده کارایی بالای مدل در حالت نیمه توزیعی و استفاده از دو تابع هدف برای واسنجی پارامترها بوده و ضرایب NS، NS-log در دو حالت واسنجی و صحت‌سنجی به ترتیب برابر 86/0، 92/0 ، 76/0 و 81/0می‌باشد. باتوجه به اینکه همه نقاط روی جبهه پرتو جزو بهترین راه‌حل‌ها هستند، بنابراین برای هر پارامتر بازه بهینه آن در نظر گرفته شد. همچنین باتوجه به نتایج رضایت-بخش مدل به صورت ماهانه، می‌تواند جهت بررسی خشکسالی و تغییراقلیم در حوضه مورد مطالعه استفاده گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Simulation of Discharge in Upper Helmand Basin of Afghanistan Using Multi-objective Optimization and FLEX Conceptual Model

نویسندگان [English]

  • Artemis Roodari 1
  • Farzad Hassanpour 2
  • mostafa yaghoobzadeh 3
  • majid delavar 4
1 zabol university
2 Water engineering, Zabol Universtity
3 water management engineering, Birjand university
4 water resources management, tarbiat modares university
چکیده [English]

Hirmand River is the main drainage system in the southern part of Afghanistan and has a significant impact on the socio-economic life of Sistan region. The assessment of water potential of Hirmand River is essential for long term period, which requires the use of rainfall-runoff model. The present study focuses on simulating the daily discharge of the upper Helmand basin of Afghanistan using the conceptual model FLEX in combination with multi-objective optimization, which has not been considered in previous studies. At first, the discharge was evaluated integrally by lumped model considering one objection function. Then it was simulated using semi-distributed model by adding the logarithm of the flow to the objection function. The results of this study indicates that the model is efficient in the semi-distributed mode by using two objection functions for calibration of parameters. The coefficients of NS, NS-log in the calibration and validation period were estimated to be 0.86, 0.92, 0.76 and 0.81, respectively. Pareto front analysis gave the best optimum set for each parameter used in model simulation. The model gives satisfactory results based on monthly calibration and can be used to investigate the drought and climate change research of studied basin.

کلیدواژه‌ها [English]

  • Rainfall-runoff simulation
  • Multiobjective Optimization
  • FLEX model
  • Pareto front
  • Upper Helmand basin of Afghanistan
Allen R G, Pereira L S, Raes D and Smith M (1998) Crop evapotranspiration: Guidelines for computing crop water requirements, FAO irrigation and drainage paper No 56. Food and Agriculture Organisation, Land and Water. Rome, Italy, 326p

Ashraf Vaghefi S, Abbaspour N, Kamali B and Abbaspour K C (2017) A toolkit for climate change analysis and pattern recognition for extreme weather conditions­–­Case study: California­-­Baja California Peninsula. Environmental Modeling & Software 96:181-198

Burger A S (2005) Calibration of a precipitation runoff model for the Hirmand River in Afghanistan and Iran using remote sensing data. M.Sc. Thesis, Department of Water Management, Delft University of Technology

Carrie M V, Jacobs J M (2011) Snowpack and runoff generation using AMSR-E passive microwave observations in the Upper Helmand Watershed, Afghanistan. Remote Sensing of Environment 115:3313-3321

Coello C A (2004) Handling multiple objectives with particle swarm optimization. IEEE Transaction on Evolutionary Computation 8:256-279

Cooper V A, Nguyen V T V and Nicell J A (2007) Clibration of conceptual rainfall-runoff models using global optimization methods with hydrologic process-based parameter constraints. Journal of Hydrology 334(3-4):455-466

Favre R, Kamal G M (2004) Watershed atlas of Afghanistan: Kabul, Afghanistan. Information Management Service, 183p

Fenicia F, Savenije H H G, Matgen P and Pfister L (2006) Is the groundwater reservoir linear? Learning from data in hydrological modeling. Hydrology and Earth System Sciences 10:139-150 

Fenicia F, Savenije H H G, Matgen P and Pfister L (2007) A comparison of alternative multiobjective calibration strategies for hydrological modeling. Water Resources Research 43:1-16

Foglia L, Hill M C, Mehl S W and Burlando P (2009) Sensitivity analysis, calibration, and testing of a distributed hydrological model using error­-­based weighting and one objective function. Water Resources Research 45:1-18

Gao H, Ding Y, Zhao Q, Hrachowitz M and Savenije H H G (2017) The importance of aspect for modeling the hydrological response in a glacier catchment in Central Asia. Hydrological Processes 31(16):2842-2859

Gharari S, Hrachowitz M, Fenicia F, Gao H and Savenije H H G (2014) Using expert knowledge to increase realism in environmental system models can dramatically reduce the need for calibration. Hydrology and Earth System Sciences 18:4839­-­4859

Hajihoseini H, Hajihoseini M, Morid S, Delavar M and Booij M J (2016) Hydrological assessment of the 1973 treaty on the Transboundary Helmand River, using the SWAT model and global climate database. Journal of Water Resources Management 30(13):4681-4694

Hajihoseini H, Hajihoseini M, Najafi A, Morid, S and Delavar, M (2015) Assessment of changes in hydro­­meteorological variables upstream of Helmand Basin during the last century using CRU data and SWAT model. Iran­-­Water Resources Research 10(3):38-52 (In Persian)

Hrachowitz M, Savenije H H G, Bogaard T A, Tetzlaff D and Soulsby C (2013) What can flux tracking teach us about water age distribution patterns and their temporal dynamics?. Hydrology and Earth System Sciences 17:533-564

Khazaei M R, Zahabiyoun B and Saghafian B (2009) Automatic calibration of the ARNO conceptual Rainfall­-Runoff model. Iran­-­Watershed Management Science & Engineering 3(8):21-28 (In Persian)

Li Xuyong, Weller D E and Jordan T E (2010) Watershed model calibration using multi-objective optimization and multi-site averaging. Journal of Hydrology 380:277-288

Liu Y, Lu M, Huo X, Hao Y, Gao H, Liu Y, Fan Y and Metivier F (2016) A Bayesian analysis of generalized Pareto distribution of runoff minima. Hydrological Processes 30:424-432

Lu D, Ye M, Meyer P D, Curtis G P, Shi X, Niu X and Yabusaki S B (2013) Effects of error covariance on estimation of model averaging weights and predictive performance. Water Resources Research 49:6029-6047

Madsen H (2000) Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. Journal of Hydrology 235:276-288

Madsen H (2003) Parameter estimation in distributed hydrological catchment modeling using automatic calibration with multiple objectives. Advances in Water Resources 26:205-216

Majidi M and Alizadeh A (2012) Analysis of the effect of missing weather data and alternative methods to estimate the refrence evapotranspiration and ranking ET0 equation for different climatic conditions (case study: Khorasan Razavi Provinces). Journal of Water and Soil 25(6):1503-1519 (In Persian)

Mostafaie A, Forootan E, Safari A and Schumacher M (2018) Comparing multi-objective optimization techniques to calibrate a conceptual hydrological model using in situ runoff and daily GRACE data. Computational Geosciences 22:789-814

Reddy M J, Kumar D N (2007) Multi-objective particle swarm optimization for generating optimal trade-offs in reservoir operation. Hydrological Processes 21:2897-2909

Rezaei H, Jabbari A, Behmanesh J and Hessari B (2017) Modeling the runoff of Nazloo Chai watershed at the west side of Uremia Lake by the use of Tank model. Journal of water and Soil Conservation 23(6):123-141 (In Persian)

 Roodari A, Hassanpour F, Yaghobzadeh M and Delavar M (In Press) The investigation of relation between hydrological and meteorological droughts in Sistan Plain. Journal of Environmental of Science and Technology (In Persian)

Savenije H H G (2010) Topography driven conceptual modeling (FLEX-Topo). Hydrology and Earth System Sciences 14:2681-2692

Sibert J (1997) Estimation of parameter uncertainty in the HBV model. Nordic Hydrology 28:247-262

Sorooshian S and Gupta V K (1983) Automatic calibration of conceptual rainfall-runoff models: The question of parameters observability and uniqueness. Water Resources Research 19(1):260-268

Tekleab S, Uhlenbrook S, Savenije H H G, Mohamed Y and Menninger J (2015) Modeling rainfall-runoff processes of the Chemoga and Jedeb meso-scale catchments in the Abay/Upper Blue Nile basin, Ethiopia. Hydrological Sciences Journal 60(11):2029-2046

Tiedeman C R, Green C T (2013) Effect of correlated observation error on parameters, predictions and uncertainty. Water Resources Research 49:6339-6355

U. S. Agency for International Development (1976) Helmand River Basin-Soil and water survey study report. Open-File Report in Kabul, Afghanistan, 180p

Uhlenbrook S, Roser S and Tilch N (2004) Hydrological process representation at the meso­-­scale: The potential of a distributed conceptual catchment model. Journal of Hydrology 291:278-296

Zhang C, Wang R and Meng Q (2015) Calibration of conceptual rainfall-runoff models using global optimization. Advances in Meteorology 2015:1-12