استفاده از ترکیب منطق فازی و فرآیند تحلیل سلسله مراتبی بمنظور مکانیابی تصفیه‌خانه‌های غیر‌متمرکز فاضلاب استان قم

نوع مقاله: مقاله پژوهشی

نویسندگان

گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه صنعتی قم، قم، ایران.

چکیده

در سال‌های اخیر توجه ویژه‌ای به بحث آلودگی آب‌ها شده است که یکی از دلایل آن، کم‌آبی یا خشکسالی است. یکی از روش‌هایی که به برون‌رفت از این بحران کمک شایانی می‌کند، استفاده مجدد از پساب است. در شهرهای بزرگ فاضلاب کل شهر در قالب یک شبکه جمع‌آوری شده و در یک تصفیه‌خانه فاضلاب متمرکز تصفیه می‌گردد. این رویکرد از جنبه‌های مختلف از جمله هزینه‌های جمع‌آوری فاضلاب، ریسک حوادث غیرمترقبه و استفاده مجدد از پساب تصفیه شده دارای محدودیت‌های زیادی است. در شهرهای با جمعیت کمتر، استفاده از تصفیه‌خانه متمرکز ممکن است از لحاظ زیرساختی و هزینه‌های عملیاتی مساله داشته باشد. برای این شرایط استفاده از تصفیه‌خانه‌های فاضلاب غیرمتمرکز در پژوهش‌های مختلف توصیه شده است. لذا شناسایی و مکانیابی جوامعی که دارای بیشترین پتانسیل برای استفاده از تصفیه‌خانه‌های غیرمتمرکز هستند بسیار ضروری است. در این تحقیق با استفاده از ترکیب منطق فازی و فرآیند تحلیل سلسله مراتبی، استان قم و مراکز جمعیتی آن مورد مطالعه و بررسی قرار گرفته و جوامعی که بیشترین پتانسیل اجرای تصفیه‌خانه‌های غیرمتمرکز را دارند مکانیابی شده و به هر کدام از این جوامع یک اندیس فازی-سلسله مراتبی تعلق گرفته است. بر این اساس برای استان قم مراکز جمعیتی که بیشترین پتانسیل احداث تصفیه‌خانه‌های غیرمتمرکز را دارند بصورت صرم، ورناچ، جنداب، ورجان و کهک اولویت می‌یابد. در پایان برای روستاهای تحت مطالعه مقایسه میزان هزینه احداث شبکه جمع‌آوری فاضلاب تصفیه‌ غیرمتمرکز با روش متمرکز در مدل WPM انجام شد. نتایج این مطالعه نشان داد که روش غیرمتمرکز نسبت به روش متمرکز چندین برابر کم هزینه‌تر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Decentralized Wastewater Treatment Plants Site Selection of Qom Province by Using Fuzzy Logic and AHP

نویسندگان [English]

  • Mostafa Rezaali
  • Abdolreza Karimi
Department of Civil Engineering, Qom University of Technology (QUT), Qom, Iran
چکیده [English]

Water pollution has received particular attention in recent years. One of its reasons can be water scarcity or drought. One of the methods which significantly helps to manage this crisis is reuse of the effluent of wastewater treatment plants. In big cities, wastewater is usually collected by an integrated wastewater collection system and then treated in a centralized wastewater treatment plant. This approach has a lot of limitations regarding wastewater collection costs, risks of unanticipated events and treated effluent reuse. Furthermore, in less populated cities, using centralized wastewater treatment plants might be costly when concerning infrastructural and operational costs. In this situation, it is recommended in the literature to use decentralized wastewater treatment plants (DWWTPs). Therefore, it is crucial to highlight and locate communities with more potential to use this facility. This study aims to locate the communities which have the most potential to construct DWWTPs and dedicate them a fuzzy-AHP index. Based on the findings of this study, the prioritized societies with high potential to build DWWTP in Qom Province are Sarm, Vanarch, Jandab, Varjan, and Kahak. Finally, the communities under the study were compared regarding wastewater collection system costs by using WPM model. The results indicated that DWWTP was multiple of times more economical than the centralized method.

کلیدواژه‌ها [English]

  • Wastewater Treatment
  • Decentralized WWTP
  • Fuzzy-AHP Analysis
  • Wastewater Reuse

Akgun A, Dag S & Bulut F (2008) Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environmental Geology 54:1127-1143

Anagnostopoulos K & Vavatsikos A (2011) Site suitability analysis for natural systems for wastewater treatment with spatial fuzzy analytic hierarchy process. Journal of Water Resources Planning and Management 138:125-134

Ayalew L, Yamagishi H & Ugawa N (2004) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture. Japan Landslides 1:73-81

Bakir H A (2001) Sustainable wastewater management for small communities in the Middle East and North Africa. Journal of Environmental Management 61:319-328

Banai R (1993) Fuzziness in geographical information systems: contributions from the analytic hierarchy process. International Journal of Geographical Information Science 7:315-329

Borsuk M E, Maurer M, Lienert J & Larsen T A (2008) Charting a path for innovative toilet technology using multicriteria decision analysis. ACS Publications

Brown V, Jackson D & Khalifé M (2010) Melbourne metropolitan sewerage strategy: a portfolio of decentralised and on-site concept designs. Water Science and Technology 62:510-517

Butler R & Maccormick T (1996) Opportunities for decentralized treatment, sewer mining and effluent re-use. Desalination 106:273-283

Carver S J (1991) Integrating multi-criteria evaluation with geographical information systems. International Journal of Geographical Information System 5:321-339

Chang N-B, Parvathinathan G & Breeden J B (2008) Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region. Journal of environmental management 87:139-153

Chiadamrong N (1999) An integrated fuzzy multi-criteria decision making method for manufacturing strategies selection. Computers & Industrial Engineering 37:433-436

Collins M G, Steiner F R & Rushman, M J (2001) Land-use suitability analysis in the United States: historical development and promising technological achievements. Environmental Management 28:611-621

Crites R & Tchobanoglous G (1998) Small and decentralized wastewater management systems. WCB/McGraw-Hill Boston

Environmental Protection Agency (2018). EPA Code of Practice [Online] Available: https://wwwepaie/pubs/ advice/water/wastewater/code%20of%20practice%20for%20single%20houses/Code%20of%20Practice%20Part%201%202010pdf [Accessed]

Fane A & Fane S (2005) The role of membrane technology in sustainable decentralized wastewater systems. Water Science and Technology 51:317-325

Guest J S, Skerlos S J, Barnard J L, Beck M B, Daigger G T, Hilger H, Jackson S J, Karvazy K, Kelly L & Macpherson L (2009) A new planning and design paradigm to achieve sustainable resource recovery from wastewater. ACS Publications

Ghaffari Moghadam Z, Keikhah A & Sabouhi M (2012) Optimum water resources allocation using game theory. Iran Water Resources Research 8:12-23

Hedberg T (1999) Attitudes to traditional and alternative sustainable sanitary systems. Water Science and technology: 39:9-16

Heydari Aghagol M, Ghoami E & Rostami Barani H R (2017) Finding potential groundwater resources using fuzzy logic (case study: south khorasan province). Iran Water Resources Research 13:211-215

Heywood I, Oliver J & Tomlinson S (1995) Building an exploratory multi-criteria modelling environment for spatial decision support. Innovations in GIS2, Taylor & Francis, London, pp.127-136

Ho G (2005) Technology for sustainability: the role of onsite, small and community scale technology. Water Science and Technology 51:15-20

Ho G & Anda M (2006) Centralised versus decentralised wastewater systems in an urban context: the sustainability dimension. 2nd IWA leading edge on sustainability in water-limited environments IWA Publishing pp.81-89

Hong S-W, Choi Y-S, Kim S-J & Kwon G (2005) Pilot-testing an alternative on-site wastewater treatment system for small communities and its automatic control. Water Science and Technology 51:101-108

Hopkins L D (1977) Methods for generating land suitability maps: a comparative evaluation. Journal of the American Institute of Planners 43:386-400

Jiang H & Eastman J R (2000) Application of fuzzy measures in multi-criteria evaluation in GIS. International Journal of Geographical Information Science 14:173-184

Karrasch B, Parra O, Cid H, Mehrens M, Pacheco P, Urrutia R, Valdovinos C & Zaror C (2006) Effects of pulp and paper mill effluents on the microplankton and microbial self-purification capabilities of the Biobio River, Chile. Science of the Total Environment 359(1-3):194-208

Karsak E E & Tolga E (2001) Fuzzy multi-criteria decision-making procedure for evaluating advanced manufacturing system investments. International journal of production economics 69:49-64

Lamichhane K (2007) On-site sanitation: a viable alternative to modern wastewater treatment plants. Water Science and Technology 55:433-440

Lee S-J, Lim S-I & Ahn B-S (1998) Service restoration of primary distribution systems based on fuzzy evaluation of multi-criteria. IEEE Transactions on Power Systems 13:1156-1163

Libralato G, Ghirardini A V & Avezzù F (2012) To centralise or to decentralise: An overview of the most recent trends in wastewater treatment management. Journal of Environmental Management 94:61-68

Malczewski J (2000) On the use of weighted linear combination method in GIS: common and best practice approaches. Transactions in GIS 4:5-22

Massoud M A, Tarhini A & Nasr J A (2009) Decentralized approaches to wastewater treatment and management: applicability in developing countries. Journal of Environmental Management 90:652-659

Maurer M, Rothenberger D & Larsen T (2005) Decentralised wastewater treatment technologies from a national perspective: at what cost are they competitive?. Water Science and Technology: Water Supply 5:145-154

Metcalf Eddy, Burton F L, Stensel H D & Tchobanoglous G (2003) Wastewater engineering: treatment and reuse. McGraw Hill

Moeinaddini M, Khorasani N, Danehkar A & Darvishsefat A A (2010) Siting MSW landfill using weighted linear combination and analytical hierarchy process (AHP) methodology in GIS environment (case study: Karaj). Waste Management 30:912-920

Otis R (1996) Small diameter gravity sewers: experience in the United States Low-cost sewerage. Wiley, Chichester 123-133

Otterpohl R, Grottker M & Lange J (1997) Sustainable water and waste management in urban areas. Water Science and Technology 35:121-133

Rauch W, Brockmann D, Peters I, Larsen T A & Gujer W (2003) Combining urine separation with waste design: an analysis using a stochastic model for urine production. Water Research 37:681-689

Saaty T (1980) The analytical hierarchy process: planning, setting priorities, resource allocation. McGraw-Hill International Book Co, New York

Saaty T L (1977) A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology 15:234-281

Saaty T L (1978) Exploring the interface between hierarchies, multiple objectives and fuzzy sets. Fuzzy Sets and Systems 1:57-68

Sadeghian M, Rezaei H, Behmanesh J & Khanmohammadi N (2018) Evaluation of groundwater quality parameters using GIS and geostatistical (case study: Urmia plain). Iran Water Resources Research 14:284-289

Shafiei M & Ghanbarzadeh Lak M (2018) Modeling artificial groundwater nourishing (through flood spreading) site selection process based on gis technique and ahp method (case study: khoy plain aquifer). Iran Water Resources Research 14(5):253:264

USEPA (2018) Land application of biosolids. [Online] Available at: https://wwwepagov/biosolids/land-application-biosolids [Accessed]

Wang Y-M, Chin K-S, Poon, G K K & Yang J-B (2009) Risk evaluation in failure mode and effects analysis using fuzzy weighted geometric mean. Expert Systems with Applications 36:1195:1207

Weber B, Cornel P & Wagner M (2007) Semi-centralised supply and treatment systems for (fast growing) urban areas. Water Science & Technology 55(1-2):349-56

Wilderer P A & Schreff D (2000) Decentralized and centralized wastewater management: a challenge for technology developers. Water Science and Technology 41(1)

Wrf (2018) Decentralized systems performance and costs fact sheets [Online] Available: http://wwwwerforg/i/c/DecentralizedCost/Decentralized_Costaspx [Accessed]

Zadeh L A (1965) Fuzzy sets. Inform Control 8:338-365

Tasnim News Agancy (2017) Criticism of regional water company for excessive groundwater consumption of authorized wells. (In Persian)

Donya-e-Eqtesad (2015) Wastewter reuse from the treated wastewater in water and wastewater of Qom. (In Persian) [Online] Available at: https://googl/rz3qvQ [Accessed]

Management and Planning Organization of Qom Province (2018) Province features. [Online] Available at: http://sdighomir/ [Accessed] (In Persian)

Statistical center of Iran (2015) Public census.