یک مدل تحلیل ریسک به منظور مدیریت ایمنی در تصفیه‌خانه‌های آب، مطالعه موردی: تصفیه‌خانه آب سلمان فارسی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه شیراز

2 دانشگاه تهران

3 فارغ‌التحصیل بخش مهندسی آب دانشگاه شیراز

چکیده

پدافند غیرعامل به مجموعه اقداماتی اطلاق می‌گردد که با اجرای آن‌ها می‌توان از وارد‌شدن خسارات مالی به تجهیزات و تأسیسات حیاتی و حساس یک کشور و تلفات انسانی جلوگیری نموده و میزان این خسارات را به کمینه مقدار ممکن کاهش داد. در این مقاله، یک مدل تحلیل ریسک برای انتخاب و رتبه‌بندی ملاحظات مدیریت ایمنی و پدافند غیرعامل در تصفیه‌خانه‌های آب و در قالب مطالعه موردی تصفیه‌خانه آب سلمان فارسی تدوین گردیده است. به بیان دیگر، ریسک هر یک از عوامل تهدید‌کننده سیستم تصفیه‌خانه آب به‌ طور مجزا و توسط روش فازی AHP مشخص شده است. سپس، میزان مشارکت هر یک از واحدهای سیستم تصفیه‌خانه سلمان فارسی در ریسک کل سیستم تعیین گردیده است. نتایج حاصله از مدل پیشنهادی، بیان‌کننده این مطلب می‌باشد که زلزله با 7/13%، بیشترین درصد ریسک را به‌عنوان یک عامل تهدید‌کننده سیستم تصفیه‌خانه سلمان فارسی در پی دارد. هم‌چنین، مخازن نگه‌داری گاز کلر، بیشترین میزان مشارکت را در میزان ریسک کل سیستم تصفیه‌خانه آب سلمان فارسی داشته‌اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Risk Analysis Model for Security Management in Water Treatment Plants, Case Study: Salman Farsi Water Treatment Plant

نویسندگان [English]

  • Mohammad Reza Nikoo 1
  • Reza Kerachian 2
  • Nafiseh Khoramshekooh 3
1 Assistant Professor, Department of Civil and Environmental Engineering, School of Engineering, Shiraz University, Shiraz, Iran
2 Professor, School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran
3 Graduated student, Shiraz university
چکیده [English]

Passive defense measures are used to preserve equipment and vital installations of a country from the financial damages and prevent or minimize human loss. In this paper, a risk analysis model is prepared in order to select and rank the considerations of passive defense in water treatment plants, case study of Salman Farsi. In other words, risks of all threatening factors of water treatment plant are determined separately, based on Fuzzy AHP method. Then, participation amount of every unit of Salman Farsi water treatment plant in total risk is determined. Obtained results of the proposed model, indicate that the factor of earthquake has threatening risk of 13.7% in Salman Farsi water treatment system which is the most risk among all factors. Also, the chlorine gas storage tanks, have the most effective role in total risk of Salman Farsi water treatment plant system.
Keywords: Passive Defense, Risk Analysis, Fuzzy Set Theory, AHP, Salman Farsi Water Treatment Plant.

کلیدواژه‌ها [English]

  • passive defense
  • Risk Analysis
  • Fuzzy Set Theory
  • AHP
  • Salman Farsi Water Treatment Plant

Abrishamchi A, Ebrahimian A, Tajrishi M, Marino MA (2005) Case study: Application of multi criteria decision making to urban water supply. Journal of Water Resources Planning and Management 131(4):326-335

Adgar A, Cox CS, Bohme TJ (2000) Performance improvements at surface water treatment works using Annbased automation schemes. Chemical Engineering Research and Design 78(7):1026-1039

Akgun I, Kandakoglu A, Ozok AF (2010) Fuzzy integrated vulnerability assessment model for critical facilities in combating the terrorism. Expert Systems with Applications 37(5):3561-3573

Artimani JS, Arjmand M, Kalaei MR (2012) Modeling and assessing risk analysis of chlorine gas in water treatment plants. European Journal of Experimental Biology 2(6):2151-2157

Asgarian Maedeh, Tabesh M, Roozbahani A, Badali Bavani E (2017) Risk assessment and management of wastewater collection and treatment systems using FMADM methods. Iranian Journal of Science and Technology, Transactions of Civil Engineering 1-17, DOI:10.1007/s40996-017-0062-3

Ashbolt NJ, Petterson SR, Roser DJ, Westrell T, Ottoson J, Schönning C, Stenström TA (2006) Microbial risk assessment tool to aid in the selection of sustainable urban water systems. In: Proc. of 2nd IWA Leading-Edge on Sustainability in Water-Limited Environments Conference, Eds: Beck MB, Speers A, IWA Publishing, London

Atayifar H (2009) Passing the crisis and emergencies in water treatment plants. In: 3rd National Congress of Water and Wastewater, Tehran (In Persian) 

Behboodian S, Tabesh M, Mirabi M, Dehghani M (2011) Using OWA to determine the different parts of water treatment plants. In: International Conference of Water and Wastewater, Tehran, Iran (In Persian) 

Carrière A, Barbeau B, Cantin JF (2007) Vulnerability of drinking water treatment plants to low water levels in the St. Lawrence River. Journal of Water Resources Planning and Management 133(1):33-38

Chowdhury S, Husain T (2006) Evaluation of drinking water treatment technology: An entropy-based fuzzy application. Journal of Environmental Engineering 132(10):1264-1271

Eisenberg D, Soller J, Sakaji R, Aoliveri A (2001) A methodology to evaluate water and wastewater treatment plant reliability. Water Science and Technology 43(10):91-99

Fares H, Zayed T (2010) Hierarchical fuzzy expert system for risk of failure of water mains. Journal of Pipeline Systems Engineering and Practice 1(1):53-62

Fujiwara O, Chen HJ (1993) Reliability analysis of water supply systems integrating with treatment plant operations. Reliability Engineering & System Safety 42(1):47-53

Lee CC (1990) Fuzzy logic in control systems: Fuzzy logic controller, part I and II. IEEE Transactions on Systems, Man and Cybernetics 20(2):404-435

Mirabi M, Mianabadi H, Zarghami M, Sharifi MB, Mostert E (2014) Risk-based evaluation of wastewater treatment projects: A case study in Niasar city, Iran. Resources, Conservation and Recycling 93:168-177

Rahman S, Zayed T (2009) Condition assessment of water treatment plant components. Journal of Performance of Constructed Facilities 23(4):276-287

Rao KD, Gopika V, Sanyasi Rao VVS, Kushwaha HS, Verma AK, Srividya A (2009) Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment. Reliability Engineering & System Safety 94(4):872-883

Roozbahani A (2012) Decision system based on risk for managing the urban water supply systems. Ph.D. Thesis, Tehran University, Tehran, Iran (In Persian) 

Roozbahani A, Zahraie B, Tabesh M (2013) Integrated risk assessment of urban water supply systems from source to tap. Stochastic Environmental Research and Risk Assessment 27(4):923-944

Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York

Simon U, Bruggemann R, Pudenz S (2004) Aspect of decision support in water management-example Berlin and Potsdam (Germany) I-spatially differentiated evaluation. Water Research 38(7):1809-1816

Tabesh M, Badali Bavani E, Asgarian M, Rouzbahani A (2015) An algorithm for risk analysis and management of wastewater treatment plants. Iran-Water Resources Research 3(10):53-65 (In Persian)

Tavakolifar H (2008) Providing the assessment algorithm and improving preparedness of urban water treatment plants against crises. M.Sc. Thesis, Tehran University, Tehran, Iran (In Persian)

Xu YP, Tung YK (2008) Decision-making in water management under uncertainty. Water Resources Management 22(5):535-550