شبیه‌سازی میزان نیترات ورودی از زمین های کشاورزی به رودخانه با استفاده از مدل SWAT (مطالعه موردی : زنجان رود)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 عضو هیئت علمی گروه مهندسی آب دانشگاه زنجان

2 کارشناس ارشد آبیاری و زهکشی دانشگاه زنجان

چکیده

در این مطالعه میزان نیترات ورودی از زمین های کشاورزی به رودخانه زنجان‌رود با استفاده از مدل SWAT شبیه‌سازی شده است. برای واسنجی و اعتبارسنجی از نرم‌افزار SWAT-CUP و مقادیر اندازه‌گیری شده شدت‌جریان متوسط ماهانه در ایستگاه آب‌سنجی سرچم بین سال‌های (2010-1996)، استفاده شده و برای تحلیل حساسیت 26 پارامتر حساس انتخاب شده است. سه گزینه برای شیوه آبیاری، سه گزینه برای میزان کود مصرفی و دو گزینه تلفیقی تعریف‌شده است. به‌منظور تحلیل عدم قطعیت از شاخص‌های p-factor و r-factor و تحلیل کیفیت نتایج مدل از دو شاخص ضریب تعیین(R2) و ضریب نش-ساتکلیف (NS) استفاده شده است. در مرحله واسنجی رواناب ماهانه، در خروجی حوضه ضرایب r-factor ،p-factor ،R2 ،NS ، به ترتیب 27/0، 11/0، 83/0 و 53/0 و در مرحله اعتبارسنجی به ترتیب 60/0، 18/0، 73/0 و 53/0 بدست آمده است. نتایج نشان داد که با افزایش سطح آبیاری تحت‌فشار میزان نیترات ورودی به زنجان رود تغییر چشم‌گیری ندارد. در رابطه با میزان کود، کاهش 50 درصدی مصرف کودهای اوره، مقدار نیترات ورودی به رودخانه زنجان‌رود را به میزان 7/16 درصد کاهش داده است. از طرفی افزایش 50 درصدی مصرف کودها، نیترات ورودی را به میزان 2/17 درصد افزایش داده است. با تغییر شیوه آبیاری سطحی به تحت‌فشار و افزایش راندمان آبیاری، تغییر چشمگیری در میانگین میزان نیترات ورودی به منابع آب سطحی ایجاد نمی‌شود. همچنین با کاهش مقادیر کود‌دهی و جلوگیری از کود‌دهی بی‌رویه به‌وسیله کشاورزان، به میزان زیادی می‌توان مانع آلودگی منابع آب‌های سطحی گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation of nitrate input from agricultural land to the river using the SWAT model (Case Study: Zanjanrood)

نویسندگان [English]

  • Farhad Misaghi 1
  • Maryam Nouri 2
1 Assistant Professor, Water engineering Department, University of Zanjan.
2 Master of Science in Irrigation and Drainage, University of Zanjan
چکیده [English]

In this study, the amount of nitrate input from agricultural land to Zanjanrood River has been simulated using the SWAT model. In order to calibrate and validate the results, SWAT-CUP software and measured mean monthly average flow rate at Sarcham hydrometeric station (1996-2013) were used, and 26 sensitive parameters were selected for sensitivity analysis. Three scenarios for irrigation practices, three scenarios for fertilizer rates and two integrated scenarios were defined. The p-factor and r-factor indices were used for uncertainty analysis and two statistical indices of determination coefficient (R2) and Nash-Sutcliff (NS) coefficient were used for quality analysis of the results,. In the monthly runoff calibration, at the basin outlet, the coefficients r-factor, p-factor, R2, NS were 0.27, 0.11, 0.83, and 0.53 respectively, and at the validation stage, they were 0.6, 0.18, 0.73 and 0.53. The results showed that with increasing pressurized irrigation areas, nitrate pollution in the basin was not significantly affected. With regard to fertilizer levels, by reducing consumption of urea fertilizers up to 50%, the amount of nitrate input into the Zanjanrood River reduced up to about 16.7%. On the other hand, an increase of 50% in fertilizer use has increased nitrate input into the river by 17.2%. Therefore, changing the surface irrigation method does not lead to a significant change in the average nitrate output from the basin. Also, reducing the amount of fertilization and preventing unnecessary fertilization by farmers, pollution of water resources can be greatly prevented.

کلیدواژه‌ها [English]

  • Nitrate
  • Fertilizer
  • Irrigation system
  • SWAT model

Abbaspour, K C, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J, Zobrist J, Srinivasan R (2007) Modeling of hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology 333:413-430

Abbaspour K C (2011) User manual for SWAT-CUP4. SWAT calibration and uncertainty analysis programs, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Duebendorf, Switzerland, from http://www.eawag.ch

Akbari M, Bahremand A, Najafi Nejad A (2012) Sensitivity analysis of parameters of SWAT model in Chehelchay watershed in Guilan province. Journal of Agricultural Science and Technology, Water and Soil Science 67(18):279-287 (In Persian)

Akhavan S, Abedi-Koupai J,  Mousavi S F, Afyuni M, Eslamian S S, and Abbaspour K (2010) Application of SWAT model to investigate nitrate leaching in Hamadan–Bahar Watershed, Iran. Agriculture, Ecosystems & Environment 139:675-688

Agriculture Organization of Zanjan Province (2013) Report on the efficiency of irrigation systems in Zanjan province. Agriculture Organization of Zanjan Province (In Persian)

Antje U, Martin V (2009) Application of the Soil and Water Assessment Tool (SWAT) to predict the impact of alternative management practices on water quality and quantity. Agricultural Water Management 96:1207-1217

Arnold J G, Srinivasan R, Muttiah S, Williams J R (1998) Large area hydrologic modeling and assessment. Part I Model development, Journal American Water Resource 34(1):73-89

Asadi M (2005) Non-point water pollution, problems and perspectives. Second National Conference on Watershed Management and Water and Soil Management March 3-4 Kerman (In Persian)

Bagherzadeh  A , Pirouz  B, Sabeti Raftar A (2009) Effects of urban, industrial and agricultural pollutants on water quality in Goharrood river in Rasht County, Guilan Province. 8th International River Engineering Seminar, Shahid Chamran University, Ahvaz, Iran (In Persian)

Beven K, Binley A (1992) The future of distributed models-model calibration and uncertainty prediction. Hydrology Process 6;279-298

Farahmand A R, Fardad H, Liaghat A, Khashi A (2006) The effect of water and nitrogen amounts on quantity and quality of tomato under deficit irrigation. Iranian Journal Agriculture Science, 37:273-279

Faramarzi M, Abbaspour K C, Schulin R, Yang H (2009) Modelling blue and green water resources availability in Iran. Hydrology Process 23:486-501

Faramarzi M, Yang H, Schulin R, Abbaspour K C (2010) Modeling wheat yield and crop water productivity in Iran: implications of agricultural water management for wheat production. Agriculture Water Manage 97:1861-1875

Gassman PW, Reyes MR, Green CH, Arnold JG (2007) The soil and water assessment tool. Historical development, applications, and future research directions, Transactions of the ASABE, 50(4):1211-1250

Gebremariam S Y,  Martin J F, DeMarchi C, Bosch N S, Confesor R, Ludsin S A (2014)  A comprehensive approach to evaluating watershed models for predicting river flow regimes critical to downstream ecosystem services. Environmental Modeling & Software 61:121-134

Ghodousi M, Delavar M, Morid S (2014) The effect of land use on the hydrology of Aji Chai Basin in the Urumieh Lake. Iranian Journal of Water and Wine Research 45(2):123-133 (In Persian)

Godwin D C, Jones  J T, Ritchie P L G, Youngdahl L G (1984) The water and nitrogen components of the CERES models. In Proc, Intl, Symp, On Minimum Data Sets Agrotechnology Transfer, Patancheru, India,  Intl, Crops Research Institute for the Semi-Arid Tropics, P, 95-100

Jiang  J, Li Sh, Hu J, Huang J (2014) A modeling approach to evaluating the impacts of policy-induced land management practices on non-point source pollution, A casestudy of the Liuxi River watershed, China. Agricultural Water Management 131:1-16

Lai Y C, Yang C P, Hsieh C Y, Wu C Y, Kao C M (2011) Evaluation of non-point source pollution and river water quality using a multimedia two-model system. Journal of Hydrology 409:583-595

McElroy M B, Elkins J W, Wofsy S C, Kolb C E, Duran A P, Kaplan W A (1987)  Production and release of N2O from the Potomac Estuary. Limnology and Oceanography 23(7):1168-1182

Neitsch S L, Arnold J G, Kiniry J R, Williams J R (2005) Soil and water assessment tool theoretical documentation version 2005. Soil and Water Research Laboratory-Agricultural Research Service, Blackland Research Center-Texas Water Resources Institute Technical Report No.406

Neitsch S L, Arnold J G, Kiniry J R, Williams J R (2009) Soil and water assessment tool theoretical documentation version 2005. Soil and Water Research Laboratory-Agricultural Research Service, Blackland Research Center-Texas Water Resources Institute Technical Report No.406

Pasandideh Fard Z, Salman Mahini A, Mirkarimi H (2012) Assessing river water quality improvement by Best Management Practices (BMP) and modeling techniques. Second Conference on Environmental Planning and Management, 26th and 27th of May, Tehran University, Tehran (In Persian)

Ranjbar Jafar Abadi A, Amoshahi S (2010) Water Pollution and Maroon river water quality estimation using the NSFWQI index (Case Study). First National Conference on Health, Environment and Sustainable Development, 11th and 12th March, Islamic Azad University of Bandar Abbas, Bandar Abbas (In Persian)

Reddy K R, Khaleel  M R, Overcash, Westerman P W (1979) A nonpoint source model for land areas receiving animal wastes. II Amonia volatilization, Trans, ASAE, 22:1398-1404

Rostamian R, Jaleh A, Afyuni M, Mousavi S F, Heidarpour M, Jalalian A, Abbaspour  K C (2008) Application of a SWAT model for estimating runoff and sediment in two mountainous basins in central Iran. Hydrological Sciences Journal 53(5):977-988

Schuol J, Abbaspour K C, Sarinivasan R, Yang H (2008a) Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model. Journal of Hydrology 352:30-42

Schuol J, Abbaspour K C, Yang H, Srinivasan R, Zehnder A J B (2008b) Modelling blue and green water availability in Africa. Water Resources Research 44:8-26

Seligmand N G, Van Keulen H (1981) PARPAN: A simulation model of annual pasture production limited by rainfall and nitrogen. In: M J Frissel and J A van Veeds (eds) Simulation of nitrogen behavior of soil-plant systems, Proc Workshop, Wageningen PUDOC, 192-221

Van Griensven A, Meixner T (2006) Methods to quantify and identify the sources of uncertainty for river basin water quality models. Water Science Technology 53:51-59

Vrugt J A, Gupta H V, Bouten W, Sorooshian S (2003) A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resources Research 39(1201):1-18

Williams J R (1980) SPNM, a model for predicting sediment, phosphorus, and nitrogen yield from agricultural basins. Water Resources Bulletin 16(5):833-848

Wu Y, Chen J (2013) Investigating the effects of point source and nonpoint source pollution on the water quality of the East River (Dongjiang) in South China. Ecological Indicators 32:294-304

Yang Q, Meng F R, Zhao Z, Chow T L, Benoy G, Rees H W, Bourque C P A (2009) Assessing the impact of flow diversion terraces on stream water and sediment yields at a watershed level using SWAT model. Agriculture, Ecosystems and Environment 132:23-31

Yang J, Reichert P, Abbaspour K C, Xia J, Yang H (2008) Comparing uncertainty analysis techniques for a SWAT application to Chaohe Basin in China. Journal of Hydrology 358:1-23

Zahabion B, Goodarzi M, Massah Bouwani A (2010) Application of SWAT model in basin runoff estimation in future periods affected by climate change. Journal of Climate Research 1:45-60 (In Persian)