ریزمقیاس کردن مکانی – زمانی سری های زمانی بارش با استفاده از مدل ترکیبی موجک – شبکه عصبی مصنوعی

نوع مقاله : یادداشت فنی (5 صفحه)

نویسندگان

1 گروه عمران - آب، واحد رودهن، دانشگاه آزاد اسلامی، تهران، ایران

2 گروه عمران - آب، واحد رودهن، دانشگاه آزاد اسلامی، تهران، ایران گروه عمران - آب، دانشگاه تبریز، تبریز، ایران

چکیده

با توجه به نیاز شبیه سازی سری های زمانی بارش در مقیاس های مختلف برای مقاصد مهندسی از یک طرف و عدم ثبت این پارامترها در مقیاس های ریز بدلیل مشکلات اجرایی و اقتصادی از طرف دیگر، ریزمقیاس کردن بارش به مقیاس مورد نظر، یک امر ضروری می باشد. در این مطالعه، برای ریزمقیاس کردن سری زمانی بارش ایستگاه های تبریز و سهند، با توجه به ویژگی های غیرخطی مقیاس های زمانی، مدل ترکیبی موجک - شبکه عصبی مصنوعی (WANN) پیشنهاد شده است. برای این هدف داده های سری زمانی ماهانه شش ایستگاه و روزانه چهار ایستگاه بارش حوضه آبریز دریاچه ارومیه، برای 10 سال بوسیله تبدیل موجک به زیرسری های زمانی تجزیه شده و سپس با استفاده از معیارهای اطلاعات متقابل و ضریب همبستگی، زیرسری ها رتبه بندی شده و برای ریزمقیاس کردن سری زمانی ماهانه ایستگاه های تبریز و سهند به روزانه، زیرسری های برتر به عنوان داده های ورودی به مدل شبکه عصبی مصنوعی (ANN) وارد شد. نتایج بدست آمده از مدل WANN، با نتایج حاصل از کاربرد ANN و روش کلاسیک رگرسیون چند متغیره خطی، مقایسه شد. در مجموع نتایج مدل WANN نسبت به مدل های ANN و رگرسیون چند متغیره خطی برای اعتبارسنجی در حالت بهینه ایستگاه تبریز به ترتیب 8.5% و 33% و در حالت بهینه ایستگاه سهند، به ترتیب 13.7% و 26% افزایش نشان داد. لذا ملاحظه گردید که روش WANN نسبت به دو روش دیگر، دقت بالاتری داشته و به عنوان روشی مناسب جهت ریزمقیاس کردن پارامتر های هیدروکلیماتولوژیکی پیشنهاد می گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Spatial-temporal disaggregation of rainfall time series using wavelet-artificial neural network hybrid model

نویسندگان [English]

  • nima farboudfam 1
  • vahid nourani 2
  • babak aminnejad 1
1 Department of Water Resources Engineering, Roudehen Branch, Islamic Azad University, Tehran, Iran.
2 Department of Water Resources Engineering, Roudehen Branch, Islamic Azad University, Tehran, Iran. Department of Water Resources Engineering, Tabriz University, Tabriz, Iran.
چکیده [English]

The need to simulate rainfall time series at different time scales for engineering purposes on the one hand and lack of recording such parameters in small scales because of administrative and economic problems, on the other hand, rainfall time series disaggregation to the desired scale is an essential topic in water resources engineering. In this study, for disaggregating the Tabriz and Sahand rain gauges time series, according to nonlinear characteristics of time scales, wavelet-artificial neural network (WANN) hybrid model is proposed. For this purpose, daily data of four rain gauges and monthly data of six rain gauges from Urmia Lake Basin for ten years were decomposed with wavelet transform and then using mutual information and correlation coefficient criteria, the subseries were ranked and dominant subseries were used as input of ANN model for disaggregating the monthly rainfall time series to the daily time series. Results obtained by the WANN disaggregation model were also compared with the results of ANN and conventional multiple linear regression models. The efficiency of the WANN model with regard to ANN and multiple linear regression models at validation stage for Tabriz rain gauge shows increase up to 8.5% and 33% and for Sahand rain gauge shows increase up to 13.7% and 26% respectively. It was concluded that hybrid WANN model can be considered as an accurate model to disaggregate the hydro-climatological time series.

کلیدواژه‌ها [English]

  • Rainfall Time series
  • disaggregation
  • Artificial Neural Networks
  • wavelet transform
  • Hybrid Model
Adamowski J, Prasher S (2012) Comparison of machine learning methods for runoff forecasting in mountainous watersheds with limited data. Water and Land Development 17(1):89-97
Adamowski J, Sun K (2010) Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. Journal of Hydrology 390(1):85-91
Burian S, Durrans S (2002) Evaluation of an artificial neural network rainfall disaggregation model. Water Science and Technology 45(2):99-104
Burian S, Durrans S, Nix S, Pitt R (2001) Training artificial neural networks to perform rainfall disaggregation. Journal of Hydrologic Engineering 6(1):43-51
Burian S, Durrans S, Tomić S, Pimmel R, Wai C (2000) Rainfall disaggregation using artificial neural networks. Journal of Hydrologic Engineering 5(3):299-307
Ghorbani MA, Azani A, Mahmoudi Vanolya S (2015) Rainfall-runoff  modeling using hybrid intelligent models. Journal of Iran-Water Resources Research 11(2):146-150 (In Persian)
Kalra A, Miller W, Lamb K, Ahmad S, Piechota T (2013) Using large-scale climatic patterns for improving long lead time streamflow forecasts for gunnison and san juan river basins. Hydrological Processes 27(11):1543-1559
Kim S, Singh V (2015) Spatial disaggregation of areal rainfall using two different artificial neural networks models. Water 7(6):2707-2727
Kim T, Valdés J (2003) Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. Journal of Hydrologic Engineering 8(6):319-328
Nourani V, Baghanam AH, Adamowski J, Kisi O (2014) Applications of hybrid wavelet–artificial intelligence models in hydrology: A review. Journal of Hydrology 514(1):358-377
Nourani V, Kisi O, Komasi M (2011) Two hybrid artificial intelligence approaches for modeling rainfall–runoff process. Journal of Hydrology 402(1):41-59
Nourani V, Komasi M, Mano A (2009) A multivariate ann-wavelet approach for rainfall–runoff modeling. Water Resources Management 23(14):2877-2894
Nourani V, Ranjbar S, Tootoonchi F (2015) Change detection of hydrological processes using wavelet-entropy complexity measure case study: Urmia lake. Journal of Civil and Environmental Engineering 45.3(80):75-86 (In Persian)
Okkan U, Serbes Z (2013) The combined use of wavelet transform and black box models in reservoir inflow modeling. Journal of Hydrology and Hydromechanics 61(2):112-119
Poustizadeh N, Najafi N (2011) Discharge prediction by comparing artificial neural network with fuzzy inference system case study: Zayandeh rud river. Journal of Iran-Water Resources Research 7(2):92-97 (In Persian)
Raje D, Mujumdar P (2011) A comparison of three methods for downscaling daily precipitation in the punjab region. Hydrological Processes 25(23):3575-3589
Swinscow TDV, Campbell M J (1997) Statistics at square one, nineth edition. BMJ Publishing Group, University of Southampton, 140p
Tiwari M, Chatterjee C (2010) Development of an accurate and reliable hourly flood forecasting model using wavelet–bootstrap–ANN (WBANN) hybrid approach. Journal of Hydrology 394(3):458-470
Tripathi S, Srinivas V, Nanjundiah R (2006) Downscaling of precipitation for climate change scenarios: A support vector machine approach. Journal of Hydrology 330(3):621-640
Yang HH, Vuuren SV, Sharma S, Hermansky H (2000) Relevance of time-frequency features for phonetic and speaker-channel classification. Speech Communication 31(1):35-50