تبخیر از دریاچه‌ها و مخازن سدها:توسعه الگوریتم سنجش از دوری بیلان انرژی آب و سطح مرجع

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار/ گروه سنجش از دور و علوم محیطی، مرکز پژوهشی آب و محیط زیست شرق

2 استاد/ گروه مهندسی آب دانشگاه فردوسی مشهد

3 دانشیار /گروه مهندسی آب دانشگاه فردوسی مشهد

4 استادیار/ گر.وه مهندسی آب دانشگاه گیلان

چکیده

پیچیدگی فرآیند تبخیر از پیکره‌های آبی مانند دریاچه‌ها و مخازن سدها، کمبود اطلاعات کافی و معتبر مورد نیاز و از طرفی عدم اتکای مدیریت این منابع و مخازن به داده‌های زمانی و مکانی دقیق‌تر، موجب کند شدن پیشرفت‌های تحقیقاتی و کاربردی در این زمینه نسبت به سایر مؤلفه‌های هیدرولوژیکی شده است. مدیریت و بهره‌برداری از ذخایر سدها به‌ویژه در مناطق خشک و نیمه‌خشک نیاز به برآوردهای مطمئن‌تری از تبخیر دارد. این وضعیت در شرایطی مانند سد دوستی که منبع استراتژیک تأمین بخش وسیعی از آب شرب مشهد نیز می‌باشد، اهمیتی دوچندان می‌یابد. در این تحقیق، روشی جدید برای برآورد تبخیر از پیکره‌های آبی با ارائه حل متفاوتی از معادله بیلان انرژی توسعه داده شد. این موضوع از طریق تعریف سطح مرجع و حل همزمان معادله بیلان انرژی برای دو سطح آب و سطح مرجع صورت پذیرفت. در این روش که بیلان انرژی آب و سطح مرجع (RWEB) نام گرفت، از داده‌های دما و تابش خالص استفاده شده است. از آنجا که داده‌های ورودی مورد نیاز روش پیشنهادی، قابلیت برآورد با استفاده از فناوری سنجش از دور را دارا می باشد، لذا الگوریتم سنجش از دوری روش پیشنهادی RWEB توسعه داده شد که طی آن پارامترها و برآوردهای تبخیر به‌صورت توزیعی برای دریاچه سد دوستی حاصل گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaporation from Lakes and Reservoirs: Developing a Remote Sensing Algorithm of Refrence and Water Surface Energy Balance

نویسندگان [English]

  • M Majidi Kh 1
  • A Alizadeh 2
  • A Farid 3
  • M Vazifedoust 4
1 Assistant Professor, Remote Sensing and Environmental Science Department, East Water and Environmental Research Institute (EWERI)
2 Professor, Faculty of Agriculture, Water Engineering Dept., Ferdowsi University of Mashhad
3 Associate Professor, Water Engineering Dept., Faculty of Agriculture, Ferdowsi University of Mashhad
4 Assistant Professor Water Engineering Dept., Faculty of Agriculture, University of Guilan,
چکیده [English]

Complexity of evaporation estimation from water bodies as lakes and reservoirs and lack of reliable and available data led to reducing developments in this field compared to other hydrological components researches, especially where management of these systems doesn’t rely to spatial and temporal data. Reservoirs operation, development of a new storage and water accounting strategies require more accurate evaporation estimates especially for drinking water in arid conditions. In this research a new evaporation estimation method was developed by different solution to the energy balance equation. The proposed approach carried out by defining the reference surface and simultaneously solution to the energy balance equation for both of the water and reference surfaces. The temperature and radiation data were used in the proposed method that was called reference and water surface energy balance (RWEB). According to the input data, the RWEB method has the ability for remote sensing application. So the remote sensing algorithm of RWEB was developed.

کلیدواژه‌ها [English]

  • Energy balance
  • evaporation
  • Model development
  • Remote sensing data
  • Doosti dam
Abdi R, Yasi M (2015) Evaluation of environmental flow requirements using eco-hydrologic–hydraulic methods in perennial rivers. Water Science and Technology, 72(3):354-363

Ahmadipour z, Yasi M (2014) Evaluation of Eco-hydrology-hydraulics methods for environmental flows in Rivers (Case Study: Nazloo River, Urmia Lake Basin). Journal of Hydraulics 9(2):69-82

Amini M, Shokoohi A (2014) An analytical solution for finding the deflection point of the wetted perimeter – discharge curve by hydraulic methods for the determination of environmental flow requirements. Journal of Hydraulics 9(1):27-43

Anonymous (2008) Comprehensive project of west of Mazandaran river engineering. Co-consulting Engineers Ab-Energy Mohit, Mazandaran Regional Water Company, Ministry of Energy of Iran, 280p

Anonymous (2009) Indicator of hydrologic alteration. User manual Version 7.1, Last access 2016, 81p

Anonymous (2011) Guidline for finding aquatic ecosystems environmental water requirement, No. 556. Ministry of Energy, Ab and ABFA, Bureau of engineering and technical criteria of water and wastewater, 113p

Arthington AH, James CS, Mackay SJ, Rolls R, Sternberg D, Barnes A (2012) Hydro-ecological relationships and thresholds to inform environmental flow management, Science Report, International Water Centre, Brisbane.

Arthington AH, Tharme RE, Brizga SO, Pusey BJ, Kennard MJ (2004). Environmental flow assessment with emphasis on holistic methodologies. In proceeding of the second international symposium on the management of large rivers for fisheries volume 2, Sustaining Livelihoods and Biodiversity in the New Millennium, 11 – 14 February 2003, Phnom Penh, Kingdom of Cambodia.

Arthington AH, Zalucki JM (1998) Comparative evaluation of environmental flow assessment techniques: Review of methods. Occasional paper No. 27/98. Land and Water Resources Research and Development Corporation: Canberra, Australia.

Arthington AH, Lloyd R (1998) Logan river trial of the building block methodology for assessing environmental flow requirements. Workshop report. Centre for Catchment and In-stream Research and Department Natural Resources, Brisbane, Australia, 85p      

Bahukandi KD, Ahuja NJ (2013) Building block methodology assisted knowledge-based system for environmental-flow assessment of Suswa River of Dehradun Dist., India: A reminiscent framework, International Research Journal of Environment Sciences 2(12):74-80

Carling PA (1988) The concept of dominant discharge applied to two gravel bed stream in relation to channel stability thresholds. Earth Surface Processes and Landforms 13:355-367

Eslami A, Shokoohi A (2013) Analysis of stream flow conditions using hydrologic environmental drought index. Journal of Watershed Engineering and Management 5(2):125-133

Gippel CJ, Stewardson MJ (1998) Use of wetted perimeter in defining minimum environmental flows. Regulated Rivers: Research and Management, 14:53–67

Graf WL (1988) Fluvial processes in dry land rivers. Springer Verlag, New York, 346p

Hughes, DA (2001) Providing hydrological information and data analysis tools for the determination of ecological instream flow requirements for South African rivers. Journal of Hydrology, 241:140-151

Hughes DA, Hannart P (2003) A desktop model used to provide an initial estimate of the ecological instream flow requirements of rivers in South Africa. Journal of Hydrology, 270:167-181

King J, Louw, D (1998) Instream flow assessments for regulated rivers in South Africa using the Building Block Methodology, Aquatic Ecosystem Health & Management, 1(2):109-124, doi: 10.1080/14634989808656909

King JM (1996) Quantifying the amount of water required for maintenance of aquatic ecosystems. Water Law Review. Discussion document for policy development. Report for the Department of Water Affairs and Forestry. August 1996. Pretoria, 31p

King JM, Louw D (1998) Instream flow assessments for regulated rivers in South Africa using the Building Block Methodology. Aquatic Ecosystem Health & Management, 1:109-124

King JM, Tharme RE (1994) Assessment of the Instream Flow Incremental Methodology and initial development of alternative instream flow methodologies for South Africa. Water Research Commission Report No. 295/1/94.   Water Research Commission, Pretoria, 590p

King JM, Tharme RE, De Villiers MS (2008) Environmental flow assessment for rivers: Manual for the Building Block Method. WRC Report No TT 354/08, 364p

K0chel RC (1988) Geomorphic impact of large floods: review and new perspectives on magnitude and frequency. 169 -187. In: Baker, V.R. (Ed.). Flood Geomorphology. New York: Wiley. C14

Mays LW (2010) Water resources engineering, 2nd Edition. John Wiley and Sons. NYC, USA, 928p

McClain ME, Subalusky AL, Anderson EP, Dessu SB, Melesse AM, Ndomba PM, Mtamba JOD, Tamatamah RA, Mligo C (2014) Comparing flow regime, channel hydraulics, and biological communities to infer flow–ecology relationships in the Mara River of Kenya and Tanzania. Hydrol Sci J. 59(3-4):801-819

Nikghalb S, Shokoohi A (2013) Using two dimensional hydrodynamic method to allocate environmental flow in rivers. 9th international congress on river engineering. Shahid Chamran University, Ahvaz, Iran.

Noori Gheidari MH, Abdesharif Esfahani M, Ebrahimi L (2011) Using Developed Building Block Method in Estimating of Environmental Flow (Case study: Gumbar River). Journal of Water and Soil 25(3):646-655

Olden JD, Kennard MJ, Pusey BJ (2012) A framework for hydrologic classification with a review of methodologies and applications in ecohydrology. Ecohydrology 5(4):503-518

Pickup G, Warner RF (1976) Effects of hydrologic regime on magnitude and frequency of dominant discharge. Journal of Hydrology 29:51-75

Poff NL, Zimmerman JKH (2010) Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biol 55(1):194-205

Richter BD, Baumgartner JV, Braun, DP, Powell, J (1998) A spatial assessment of hydrologic alteration within a river network. Research & Management 14:329–340

Richter BD, Baumgartner JV, Powell J, Braun DP (1996) A method for assessing hydrologic alteration withinecosystems. Conserv Biol 10(4):1163-1174

Richter BD, Baumgartner JV, Wigington R, Braun DP (1997) How much water does a river need? Freshwater Biology 37:231-249

Rowntree KM, Wadson RA (1999) A hierarchical geomorphological model for the classification of selected South African river systems. Water Research Commission Final Report. Water Research Commission, Pretoria, 334 p

Shokoohi  A (2015) Sensitivity analysis of hydraulic models regarding hydromorphologic data derivation methods to determine environmental water requirement. Journal of Water and Waste Water 26(3):104-115

Shokoohi A, Hong Y (2011) Using hydrologic and hydraulically derived geometric parameters of perennial rivers to determine minimum water requirements of ecological habitats (case study: Mazandaran Sea Basin-Iran). Hydrological Process 25:3490–3498

Shokoohi A, Amini M (2014) Introducing a new method to determine rivers’ ecological water requirement in comparison with hydrological and hydraulic methods. International Journal of Environmental Science and Technology 11(3):747-756

Smakhtin VU, Shilpakar RL, Hughes DA (2006) Hydrology-based assessment of Environmental flows: an example from Nepal. Hydrological Sciences Journal 51(2):207-222

Suxia L, (2006) Estimating the minimum in-stream flow requirements via wetted perimeter method based on curvature and slope techniques.  J. of Geographical Sciences 16 (2):242-250

Tennant DL (1976) Instream flow regimens for fish, wildlife, recreation and related environmental resources, Fisheries 1:6–10

Tharme RE (2003) A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Research and Applications 19:397– 441

Tsai WP, Chang FJ, Herricks EE (2016) Exploring the ecological response of fish to flow regime by soft computing techniques. Ecological Engineering 87:9-19

Van Niekerk AW, Heritage GL, Moon BP (1995) River classification for management: the geomorphology of the Sabie River in the eastern Transvaal. South African Geographical Journal 77(2):68-76

Williams, GP, Wolman MG (1984) Downstream effects of dams on alluvial rivers. US Geological Survey Professional Paper 1286. U.S.G.S., Washington D.C.

Zhang H, Singh VP, Zhang Q, Gui L, Sun W (2016) Variation in ecological flow regimes and their response to dams in the upper Yellow River basin. Environmental Earth Science 75:938:1-16, doi: 10.1007/s 12665-016-5751-x

Zhang Q, Gu X, Singh VP, Chen X (2015) Evaluation of ecological instream flow using multiple ecological indicators with consideration of hydrological alterations. Journal of Hydrology 529:711-722