توسعه ی شاخص تجمیعی خشکسالی (ADI) بر پایه تجزیه به مولفه های اصلی به منظور پایش خشکسالی کشاورزی در استان گلستان - ایران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری /گروه مهندسی آب، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان

2 دانشیار/گروه مهندسی آب، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان

3 استاد/ دانشکده منابع طبیعی و محیط زیست، دانشگاه فردوسی مشهد

چکیده

شاخص‌های تک متغیره برای هدف و کاربردی مشخص تا حد زیادی مفید می‌باشند، اما تصویر جامعی از ویژگی‌های خشکسالی به عنوان یک پدیده پیچیده‌ی اقلیمی ارائه نمی‌نمایند. در این پژوهش با محاسبه‌ی شاخص‌های مختلف خشکسالی به عنوان ورودی و استفاده از روش تجزیه به مولفه‌های اصلی (PCA)، شاخص تجمیعی خشکسالی (ADI) جهت پایش خشکسالی کشاورزی در سطح استان گلستان توسعه داده شد. بدین منظور با استفاده از داده‌های روزانه هواشناسی در 10 ایستگاه‌ تبخیرسنجی و سینوپتیک موجود در سطح استان گلستان مقادیر پنج شاخص پرکاربرد خشکسالی شامل: بارش استاندارد شده (SPI)، بارش- تبخیر و تعرق استاندارد شده (SPEI)، شاخص خشکسالی پالمر (PDSI)، شاخص Z (مشتق شده از شاخص پالمر) و شاخص رطوبت خاک (SMI) در مقیاس ماهانه طی 33 سال زراعی برآورد شدند. سپس با اعمال روش PCA، شاخص ADI از ترکیب خطی مولفه‌های حاصل از شاخص‌های ورودی برای هر یک از ایستگاه‌های مورد بررسی توسعه داده شد. بر پایه‌ی نتایج بدست آمده همبستگی قوی (بیشتر از 8/0) بین مقادیر شاخص ADI و SPEI در نواحی مرطوب و ماه‌های آذر تا اسفند در ایستگاه‌های مورد بررسی مشاهده شد در حالی که طی ماه‌های گرم سال شامل فروردین تا خرداد از مقدار ضریب همبستگی کاسته شده است. بررسی تطبیقی نتایج شاخص ADI با شاخص SPEI در ماه‌های مختلف سال به ویژه ماه‌های اردیبهشت و خرداد نشان می‌دهد که شاخص ADI به عنوان یک شاخص جامع می‌تواند اثرات شاخص‌های خشکسالی ورودی نظیر رطوبت خاک را منعکس و پایش جامع‌تری را در اختیار دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Development of ADI as a Aggregate Drought Index based on Principle Component Analysis for Monitoring Agricultural Drought in Golestan Province- Iran

نویسندگان [English]

  • Mohammad Ghabaei Sough 1
  • Hamid Zare Abyaneh 2
  • Abolfazl Mosaedi 3
1 Ph.D. Candidate, Dept of Water Eng, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
2 Associate Prof, Dept of Water Eng, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
3 Professor, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Iran
چکیده [English]

Univariate indices are so useful for a certain purpose but arenot able to monitor drought characteristics comprehensively. In this study the multivariate index (ADI) has developed based on Principle Component Analysis (PCA) technique by using the results of drought indices as inputs to monitor agricultural drought conditions in Golestan province. For this purpose the daily metrological variables from 10 synoptic and evaporative stations during 33 hydrological years were chosen to compute the values of 5 drought indices including Standardized Precipitation Index (SPI), Standardized Evapotranspiration–Precipitation Index (SPEI), Palmer Drought Severity Index (PDSI), Z-Index and Soil Moisture Index (SMI) in monthly timescale. In continue by applying PCA technique and considering all established components, the ADI drought index was developed based on linear combinations of derivation components for each of studied stations. finally the ADI results were compared to common indices such as SPEI and SPI. Based on the results a strong correlation coefficient based on Kendal –tau (greater than 0.8) were detected between ADI and SPEI indices in wet regions and months including November to March while a degree of correlation were reduced during warm months of April to June. A Comparative Study results of ADI with SPEI showed that the ADI index as a multivariate index could reflect the effects of input drought indices such as SMI and Z-Index for comprehensive drought monitoring.

کلیدواژه‌ها [English]

  • Soil –Water Balance Models
  • PCA technique
  • Soil Moisture Index (SMI)
  • Palmer Drought Severity Index
  • Golestan province
Alizade A, Kamali GH (2007) Crops water requirements in Iran. Astan Qods Razavi Press,  228p (In Persian)

Bazrafshan J, Hejabi S, Rahimi J (2014) Drought monitoring using the Multivariate Standardized Precipitation Index (MSPI). Water Resources Management 28(4):1045-1060

Bazrafshan O, Mohseni Saravi  M,  Malekian A, Moeini A (2011). A study on drought characteristics of Golestan province using Standardized Precipitation Index (SPI). Iranian journal of Range and Desert Research 18(3):395–406  (In Persian)

Beguería S, Vicente‐Serrano SM, Reig F, Latorre B (2014) Standardized Precipitation Evapotranspiration Index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International  Journal of Climatology 34(10):3001–3023

Dehban H, Ebrahimi K, Araghi Nejad SH (2015) Evaluation of MRDI as a new index (case study: Gorganroud basin). Iranian Journal of Soil and Water Research 46(1):19–30 (In Persian)

Doerffer R, Schiller H (2008) Algorithm Theoretical Basis Document (ATBD). Available at https://​ earth.​ esa.​ int/​ documents 10174:1591138p

Ebrahimpour M, Rahimi J, Nikkhah A, Bazrafshan, J (2014) Monitoring agricultural drought using the standardized effective precipitation index. Journal of Irrigation and Drainage Engineering 141(1):04014044

Ficklin DL, Letsinger SL, Gholizadeh H, Maxwell JT (2015) Incorporation of the penman–monteith potential evapotranspiration method into a palmer drought severity index tool. Computers & Geosciences 85:136–141

Ghabaei Sough M, Mosaedi A, Zare Abyaneh H (2016) Requisiteness of drought monitoring based on multivariate indices. In: Proc. of 6th National Conference on Iran Water Recourses Management, 20-22 April, University of Kurdistan-Iran (In Persian)

Genest C, Favre AC (2007) Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering 12(4):347–368

Govindaraju RS (2013) Special issue on data-driven approaches to droughts. Journal of Hydrologic Engineering 18:735–736

Hao Z, AghaKouchak A (2013) Multivariate standardized drought index: A multi-index parametric approach for drought analysis. Advances in Water Resources 57:12–18

Hao Z, Singh VP ( 2015) Drought characterization from a multivariate perspective: A review. Journal of Hydrology 527:668–678

Karamouz M, Araghinejad SH (2005) Advanced hydrology. Amirkabir University of Technology. Tehran polytechnic Press, 460p (In Persian)

Keyantash JA,  Dracup JA (2004) An aggregate drought index: assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage. Water Resources Research 40(9):W09304

Jacobi J, Perrone D, Duncan LL, Hornberger G (2013) A tool for calculating the palmer drought indices. Water Resources Research 49(9):6086-6089

Li Q, Zeng M, Wang H, Li P, Wang K, Yu M (2015) Drought assessment using a multivariate drought index in the Huaihe River basin of Eastern China. In: Proc. of the International Association of Hydrological Sciences 369:61–67

Lloyd-Hughes B, Saunders MA (2002) A drought climatology for Europe. International Journal of Climatology 22:1571–1592

McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Proc. of the 8th Conference on Applied Climatology, 17-22 January, Anaheim, California

Meyer SJ, Hubbard KG, Wilhite DA (1991) The relationship of climatic indices and variables to corn (maize) yields: a principal components analysis. Agricultural and Forest Meteorology 55(1-2):59–84

Mosaedi A, Shahabi M (2007) Risk management by considerate microclimate of Golestan province. Iranian Meteorological Organization. Tehran, 167p (In Persian).

Mosaedi A, Khalilizade M,  Mohammadi Ostadkelaye,  A (2008) Drought monitoring in Golestan province. Journal of Agricultural Sciences and Natural Resources 15( 2):176–183 (In Persian)

Rajsekhar D, Singh VP, Mishra AK (2015) Multivariate drought index: An information theory based approach for integrated drought assessment. Journal of Hydrology 526:164–182

Sivakumar MVK, Motha RP, Wilhite DA, Wood DA (2011) Agricultural drought indices. In: Proc. of the WMO/UNISDR Expert Group Meeting on Agricultural Drought Indices, 2-4 June, Murcia, Spain, 197p

Stagge JH, Tallaksen LM, Gudmundsson L, Van Loon AF, Stahl K (2015) Candidate distributions for climatological drought indices (SPI and SPEI). International Journal of Climatology 35(13):4027–4040

Stagge JH, Tallaksen LM, Gudmundsson L, Van Loon AF, Stahl K (2016) Response to comment on ‘Candidate distributions for climatological drought indices (SPI and SPEI)’. International Journal of Climatology 36(4):2132–2138

Svoboda M, LeComte D, Hayes M, Heim R (2002) The drought monitor. Bulletin of the American Meteorological Society 83(8):1181

Van der Loo MP (2010). Distribution based outlier detection for univariate data. Statistics Netherlands, 10003

Vangelis H, Tigkas D, Tsakiris G (2013) The effect of PET method on Reconnaissance Drought Index (RDI) calculation. Journal of Arid Environments 88:130–140

Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multi–scalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index – SPEI. Journal of Climate 23(7):1696– 1718

Woli P, Jones JW, Ingram KT, Fraisse CW (2012) Agricultural Reference Index for Drought (ARID). Agronomy Journal 104:287–300

Yu M, Li Q, Lu G, Wang H, Li P (2015) Development and application of a short- /long-term composited drought index in the upper Huaihe river basin, China. In: Proc. of the International Association of Hydrological Sciences 369:103–108