بررسی عدم قطعیت مدل های ستون تجربی انتقال آلاینده

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری هیدروژئولوژی/گروه علوم زمین دانشگاه تبریز. تبریز. ایران

2 دکتری هیدروژئولوژی/استاد گروه علوم زمین دانشگاه تبریز. تبریز. ایران

چکیده

انتخاب مدل قابل اعتماد برای شبیه سازی ستون تجربی در شناسایی فرایند‌های حاکم بر انتقال آلاینده و محاسبه پارامترهای قابل اعتماد ضروری می‌باشد. هدف این تحقیق تعیین عدم قطعیت همراه با توسعه مدل از طریق تعریف چندین مدل انتقال جایگزین، جهت انتخاب محتمل‌ترین مدل و بهترین برآورد از پارامترهای مدل انتقال است. در این مطالعه جهت بررسی عدم قطعیت در مدل‌های ستون تجربی چهار مدل مفهومی مختلف شامل: CDE1 و CDE2 مدل‌های تعادلی کانوکشن-دیسپرژن، MIM1 و MIM2 مدل‌های غیر تعادلی متحرک- غیر متحرک از منابع استفاده گردیده است. روش‌های انتخاب معیار مدل( AIC، AICC، BIC و KIC) برای ارزیابی احتمال مدل‌های مفهومی جایگزین مورد استفاده قرار گرفت. برای دستیابی به نتایج قابل اعتماد در روش‌های انتخاب معیار، در محاسبه احتمالات مدل، همبستگی زمانی بین داده‌ها حذف گردید. نتایج نشان می‌دهد که احتمال بین مدل‌ها در همه روش‌ها دارای توزیع غیر یکنواخت می-باشد به طوری که در وضعیت سرعت جریان پایین مدل CDE2 به دلیل برقراری شرط تعادل فیزیکی در محیط خاک و در وضعیت سرعت جریان بالا مدل MIM1 دارای بالاترین احتمال و کمترین عدم قطعیت می‌باشند. محاسبات احتمالات مدل در مرحله صحت سنجی نیز این نتایج را تأیید کرد. در نهایت می‌توان نتیجه گرفت که قابلیت اطمینان از تفسیر داده‌های مدل از طریق در نظر گرفتن عدم قطعیت مدل‌های جایگزین افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of contaminant transport model Uncertainty in column experiment

نویسندگان [English]

  • S. Samani 1
  • A Asghari Moghaddam 2
1 Ph.D Student of Hydrogeology, Geology Department, University of Tabriz , Tabriz, Iran
2 Ph.D in Hydrogeology, Professor, Geology Department, University of Tabriz, Tabriz, Iran
چکیده [English]

To assess the uncertainty of contaminant transport models in column experiments selecting the reliable models for simulating column experiments and estimation of reliable parameters, is essential for the identification of processes governing contaminant transport. So overall goal of this study is specifying the uncertainty associated with the development model by defining several conceptual models for selecting the most probable model and the best estimate of contaminant transport models parameters and model prediction. For exploring uncertainty in column experiment, we consider four models from the literature including the equilibrium and non-equilibrium convection dispersion models. CDE1 and CDE2 convection-dispersion models, MIM1 and MIM2 mobile-immobile models. The model selection criteria are used to evaluate the probabilities of the four models. Using the full covariance matrix that consider residual correlation will couse definitive recommendations on the basis of AIC, AICc, BIC, and KIC statistics and model probability. The result show that the distribution of probability between models is not uniform and for slow flow case because equilibrium assumption may be satisfied, CDE2 and for high flow case MIM1 are receiving High model probability. Finally we can conclude from this study that the reliability of the model’s data interpretation can be improved by considering alternative transport processes and quantifying uncertainty in the experiment.

کلیدواژه‌ها [English]

  • Uncertainty
  • Model probability
  • Column experiment
  • Contaminant transport model
  • Cross validation
Akaike H (1974) A new look at the statistical model identification. IEEE transactions on automatic control 19(6):716-723

Anamosa PR, Nkedi-Kizza P, Blue WG,  Sartain JB (1990) Water movement through an aggregated, gravelly oxisol from Cameroon. Geoderma 46(1):263-281

Anderson MP, Woessner WW (1992) Applied groundwater modeling—simulation of flow and advective transport. Academic Press. Inc, New York, 381 p

Bear J, Verruijt A (1987) Modeling groundwater flow and pollution. Springer Science & Business Media. Berlin, 414p

Comegna V, Coppola A, Sommella A (2001) Effectiveness of equilibrium and physical non-equilibrium approaches for interpreting solute transport through undisturbed soil columns. Journal of Contaminant Hydrology 50(1):121-138

Engelhardt I, Aguinaga JG, Mikat H, Schüth C, Liedl R )2014( Complexity vs. simplicity: groundwater model ranking using information criteria. Groundwater 52(4):573-583

 Finsterle S, Zhang Y (2011) Error handling strategies in multiphase inverse modeling. Computers & Geosciences 37(6):724-730

Foglia L, Mehl SW, Hill MC, Perona P, Burlando P (2007). Testing alternative ground water models using cross‐validation and other methods. Groundwater 45(5):627-641

Foglia L, Mehl SW, Hill MC, Burlando P (2013) Evaluating model structure adequacy: The case of the Maggia Valley groundwater system, Southern Switzerland. Water Resources Research 49(1):260-282

 Giacopetti M, Crestaz E, Materazzi M, Pambianchi G, Posavec K (2016) A multi-model approach using statistical index and information criteria to evaluate the adequacy of the model geometry in a fissured carbonate aquifer (Italy). Water 8(7):271

Good PI, Good P (2013) Resampling methods: A practical guide to data analysis. Springer Science & Business Media. Berlin, 265p

Haitjema H )2011( Model complexity: A cost-benefit issue. Geological Society of America 43(5)

Hill MC (2006) The practical use of simplicity in developing ground water models. Groundwater 44(6):775-781

Hoeting J, Madigan D, Raftery A, Volinsky C (1999)  Bayesian model averaging: A tutorial. Statistical Science 14(4):382–401

Hu Q, Brusseau ML (1995) Effect of solute size on transport in structured porous media. Water Resources Research 31(7):1637-1646

Hurvich CM, Tsai CL (1989) Regression and time series model selection in small samples. Biometrika 76(2):297-307

Kashyap RL (1982) Optimal choice of AR and MA parts in autoregressive moving average models. IEEE Transactions on Pattern Analysis and Machine Intelligence (2):99-104

Kass RE, Raftery AE (1995) Bayes factors. Journal of the American statistical association 90 (430):773-795

Liu P, Elshall AS, Ye M, Beerli P, Zeng X, Lu D, Tao Y (2016) Evaluating marginal likelihood with thermodynamic integration method and comparison with several other numerical methods. Water Resources Research 52(2):734-758

Lu D, Ye M, Meyer PD, Curtis GP, Shi X, Niu XF, Yabusaki SB (2013) Effects of error covariance structure on estimation of model averaging weights and predictive performance. Water Resources Research 49(9):6029-6047

Lukjan A, Swasdi S, Chalermyanont T (2016) Importance of alternative conceptual model for sustainable groundwater management of the Hat Yai Basin, Thailand. Procedia Engineering 154:308–316

Nettasana T) 2012( Conceptual model uncertainty in the management of the Chi River Basin, Thailand. Thesis, University of Waterloo

 Neuman SP (2003) Maximum likelihood Bayesian averaging of uncertain model predictions: Stochastic Environmental Research and Risk Assessment 17(5):291-305

Newman SP, Wierenga PJ (2003) Comprehensive strategy of hydrogeologic modeling and uncertainty analysis for nuclear facilities and sites. Project, University of Arizona

Padilla IY, Yeh T, Conklin MH (2000) The effect of water content on solute transport in unsaturated porous media. Water Resources Research 35 (11):3303–3313

Parker JC, Van Genuchten MT (1984) Determining transport parameters from laboratory and field tracer experiments. Virginia Agricultural Experiment Station  84(3)

Riva M, Panzeri M, Guadagnini A, Neuman SP (2011) Role of model selection criteria in geostatistical inverse estimation of statistical data‐and model‐parameters. Water Resources Research 47(7)

Rojas R, Feyen L, Dassargues A (2008) Conceptual model uncertainty in groundwater modeling: Combining generalized likelihood uncertainty estimation and Bayesian model averaging. Water Resources Research 44(12)

Schwarz G (1978) Estimating the dimension of a model. The annals of statistics 6(2):461-464

Seber GAF, Wild C (2003) Nonlinear Regression. John Wiley. New York, 768 p

Simmons CT, Hunt RJ (2012) Updating the debate on model complexity. GSA Today 22(8):28-29

Singh A, Mishra S, Ruskauff G (2010) Model averaging techniques for quantifying conceptual model uncertainty. Groundwater 48(5):701-715

Tang G, Mayes MA, Parker JC, Yin XL, Watson DB, Jardine PM (2009) Improving parameter estimation for column experiments by multi-model evaluation and comparison. Journal of Hydrology 376(3):567-578

Tang G, Mayes MA, Parker JC, Jardine PM (2010) CXTFIT/Excel–a modular adaptable code for parameter estimation, sensitivity analysis and uncertainty analysis for laboratory or field tracer experiments. Computers & Geosciences 36(9):1200-1209

Toride N, Leij FJ, Van Genuchten MT (1995) The CXTFIT code for estimating transport parameters from laboratory or filed tracer experiments. US Salinity Laboratory, 132p

Tsai F, Li X (2010) Reply to comment by Ming Ye et al. on “Inverse groundwater modeling for hydraulic conductivity estimation using Bayesian model averaging and variance window”. Water Resources Research 46(2)

Van Genuchten MT, Wierenga PJ (1976) Mass transfer studies in sorbing porous media I. Analytical solutions. Soil Science Society of America Journal 40(4):473-480

Ye M, Neuman SP, Meyer PD (2004) Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff. Water Resources Research 40(5)

Ye M, Neuman SP, Meyer PD, Pohlmann K (2005) Sensitivity analysis and assessment of prior model probabilities in MLBMA with application to unsaturated fractured tuff. Water Resources Research 41(12)

Ye M, Meyer PD, Neuman SP (2008a) On model selection criteria in multimodel analysis. Water Resources Research 44(3)

Ye M, Pohlmann KF, Chapman JB (2008b) Expert elicitation of recharge model probabilities for the Death Valley regional flow system. Journal of Hydrology 354(1):102-115

Ye M, Pohlmann KF, Chapman JB, Pohll GM, Reeves DM (2010) A model‐averaging method for assessing groundwater conceptual model uncertainty. Groundwater 48(5):716-728

Zhang Y, Yang Y (2015) Cross-validation for selecting a model selection procedure. Journal of Econometrics 187(1):95-112

Zhang Y, Yang G, Li S (2014) Significance of conceptual model uncertainty in simulating carbon sequestration in a deep inclined saline aquifer. Journal of Hazardous, Toxic, and Radioactive Waste 19(3)