بررسی مؤلفه های هیدرولوژیکی مختلف تحت تأثیر تغییرات اقلیمی و کاربری اراضی در حوضه پسیخان و اثر آنها بر تالاب انزلی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی عمران، دانشگاه آزاد اسلامی، واحد علوم تحقیقات، تهران، ایران

2 دانشیار، دانشکده مهندسی عمران، دانشگاه آزاد اسلامی، واحد علوم تحقیقات، تهران، ایران.

3 دانشیار، دانشکده مهندسی عمران، دانشگاه تهران، تهران، ایران.

4 دانشیار، پژوهشکده حفاظت خاک و آبخیزداری، تهران، ایران.

چکیده

بررسی و مدیریت حوضه‌های آبخیز بدون استفاده از مدل‌­های هیدرولوژیکی بسیار زمان‌­بر و هزینه‌­بر است. هدف از انجام این مطالعه بررسی مؤلفه‌­های مختلف هیدرولوژیکی مانند رواناب، رسوب، تبخیر و تعرق و غیره در حوضه پسیخان واقع در استان گیلان و اثرات این مؤلفه­‌ها بر تالاب انزلی است. برای انجام این پژوهش از مدل SWAT استفاده شد. اطلاعات دبی جریان، بارش و رسوب حوضه پسیخان در سه ایستگاه هیدرومتری برای دامنه زمانی از سال 1990 تا 2022 از شرکت آب منطقه­‌ای استان گیلان دریافت شد. نقشه‌­های مورد نیاز برای اجرای مدل از روش‌های متداول به دست آمدند. مؤلفه­‌های مختلف از جمله دبی جریان، رسوب، رواناب سطحی، تبخیر و تعرق، تغذیه آبخوان عمیق، نفوذ عمقی و رواناب خروجی از حوضه برای سال­‌های 2040 و 2071 مورد پیش‌­بینی قرار گرفت. برای واسنجی از اطلاعات دبی-رسوب مربوط به سال­های 2011-1999 و برای اعتبارسنجی از سال‌های 2022-2012 استفاده شد. تغییرات مؤلفه‌­های مختلف ناشی از تغییر اقلیم در سناریو RCP8.5 و تغییر کاربری اراضی مورد ارزیابی قرار گرفت. نتایج این پژوهش نشان داد که بین تغییرات مؤلفه­‌های مختلف هیدرولوژیکی و بارش در حوضه تطابق وجود دارد. معیار نش ساتکلیف برای بخش واسنجی و اعتبارسنجی مدل برای دبی جریان و رسوب بین 0/60 تا 0/80 به دست آمد که نشان دهنده دقت مناسب اجرای مدل SWAT است. نتایج نشان داد که در سال 2025 بیشترین رواناب سطحی حوضه برابر با 485 میلی­متر با بارندگی 1431 میلی­متر رخ خواهد داد. همچنین، مشاهده شد که بیشترین مقدار تبخیر و تعرق نیز در سناریو RCP8.5 در سال 1999 برابر 1707 میلی­متر بوده است. به طور کلی، در صورت عدم کنترل رسوب در حوضه پسیخان، تالاب انزلی با سرعت بسیار زیادی روبه نابودی خواهد رفت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Different Hydrological Components Influenced by Climate Change and Land Use Change Scenarios in the Pasikhan Watershed and Their Impact on the Anzali Wetland

نویسندگان [English]

  • Saeed Rashedi 1
  • Seyed Abbas Hosseini 2
  • Sara Nazif 3
  • Bagher Ghermez Cheshmeh 4
1 Ph.D. Candidate, Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 Associate Professor, Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
3 Associate Professor, Department of Civil Engineering, University of Tehran, Iran.
4 Associate Professor, Research Institute of Soil Protection and Watershed Management, Tehran, Iran.
چکیده [English]

Without hydrological models the investigation and management of watersheds can be time-consuming and costly. This study aims to explore various hydrological factors including runoff, sedimentation, evaporation, and transpiration in Pasikhan watershed located in Guilan province. The study also examines the impact of these factors on the Anzali Wetland. To achieve this, the research utilizes the SWAT model. Data on flow discharge, precipitation, and sedimentation for three hydrometric station in the Pasikhan watershed from 1999 to 2020 were obtained from the regional water company of Guilan province. The necessary maps for model execution were obtained using established methods. Predictions for various factors, such as flow rate, sedimentation, surface runoff, evaporation and transpiration, deep aquifer recharge, curve number, deep infiltration, and watershed runoff, were made for the years 2040 and 2071. Discharge-sediment from 1999 to 2011 is used for calibration and for validation used the data from 2012 to 2022 is used. The study also assessed changes in hydrological components caused by climate change using the RCP8.5 scenario and land use changes. The findings demonstrate variations in multiple hydrological elements and precipitation patterns within the catchment basin. The Nash Sutcliffe criterion yielded values between 0.60 and 0.80 for both the calibration and validation phases of the model in terms of flow rate and sedimentation. This indicated that the implementation of the SWAT model is satisfactorily accurate. Results showed that the maximum surface runoff within the basin will reach 485 mm in 2055, coinciding with a rainfall of 1431 mm. Additionally, the study identified the highest levels of evaporation and transpiration as 1707 mm within the RCP8.5 scenarios in 1996. Overall, the research emphasizes the negative impact of sediment generated within the Pasikhan watershed on the Anzali Wetland, highlighting the need for effective control measures to mitigate wetland degradation

کلیدواژه‌ها [English]

  • Evaporation
  • Sedimentation
  • Runoff
  • Curve Number
  • Modeling
Abbaspour K C (2007) User manual for SWAT-CUP, SWAT calibration and uncertainty analysis programs. Swiss Federal Institute of Aquatic Science and Technology, Eawag, Duebendorf, Switzerland 93:1-100
Abbaspour K C (2011) A user manual SWAT-CUP2: SWAT calibration and uncertainty programs. EAWAG: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
Abbaspour K C (2011) Swat-Cup2: SWAT calibration and uncertainty programs manual version 2, Department of Systems Analysis, Integrated Assessment and Modeling (SIAM), Eawag. Swiss Federal Institute of Aquatic Science andTechnology, Duebendorf, Switzerland
Akbari F, Shourian M, and Moridi A (2021) Planning the optimum crop pattern considering surface and groundwater resources interaction by coupling SWAT, MODFLOW and PSO. Iran-Water Resources Research 17(1):136-150 (In Persian)
Alansi A W, Amin M S M, Abdul Halim G, Shafri H Z M, Aimrun W (2009) Validation of SWAT model for stream flow simulation and forecasting in Upper Bernam humid tropical river basin, Malaysia. Hydrology and Earth System Sciences Discussions 6(6):7581-7609
Aloui S, Mazzoni A, Elomri A, Aouissi J, Boufekane A, and Zghibi A (2023) A review of Soil and Water Assessment Tool (SWAT) studies of Mediterranean catchments: Applications, feasibility, and future directions. Journal of Environmental Management 326:116799
Asadi H (2016) Estimation of sediment, organic carbon, and phosphorous loads from Pasikhan River into Anzali Wetland, Iran. International Journal of Environmental Protection 6:129-133
Atef I, Ahmed W, Abdel-Maguid R H (2023) Future land use land cover changes in El-Fayoum governorate: A simulation study using satellite data and CA-Markov model. Stochastic Environmental Research and Risk Assessment 38:651-664
Bekiaris I G, Panagopoulos I N, Mimikou M A (2005) Application of the SWAT (soil and water assessment tool) model in the Ronnea catchment of Sweden. Global NEST Journal 7(3):252-257
Beza M, Hailu H, Teferi G (2023) Modeling and assessing surface water potential using combined SWAT model and spatial proximity regionalization technique for ungauged sub-watershed of Jewuha Watershed, Awash Basin, Ethiopia. Advances in Civil Engineering 9972801
Coles S, Bawa J, Trenner L, Dorazio P (2001) An introduction to statistical modeling of extreme values (Vol. 208, p. 208). London: Springer
Ebrahimi E, Asadi H, Joudi M, Rezaei Rashti M, Rahmani M, Farhangi M B, Ashrafzadeh A, Khodadai M (2022a) Variation entry of sediment, organic matter and different forms of phosphorus and nitrogen in flood and normal events in the Anzali wetland. Journal of Water and Climate Change 13(2):434–450
Ebrahimi E, Asadi H, Rahmani M, Farhangi M B, Ashrafzadeh A (2022b) Effect of precipitation and sediment concentration on the loss of nitrogen and phosphorus in the Pasikhan River. AQUA-Water Infrastructure, Ecosystems and Society 71(2):211-228
El-Hamid H T A, Nour-Eldin H, Rebouh N Y, El-Zeiny A M (2022) Past and future changes of land use/land cover and the potential impact on ecosystem services value of Damietta Governorate, Egypt. Land 11(12):2169
Emerson C H, Welty C, Traver R G (2003) Application of HEC- HMS to model the additive effects of multiple detention basins over a range of measured storm volumes. Civil Engineering Database, Part of World Water & Environmental Resources Congress 2003 and Related Symposia 228pp.
Feyereisen G W, Strickland T C, Bosch D D, Sullivan D G (2007) Evaluation of SWAT manual calibration and input parameter sensitivity in the Little River watershed. Transactions of the ASABE 50(3):843-855
Gassman P W, Reyes M R, Green C H, Arnold J G (2007) The soil and water assessment tool: Historical development, applications, and future research directions. Trans ASABE 50(4):1211-1250
Ghonchepour D, Sadoddin A, Salmanmahiny A, Bahremand A, Jakeman A, Croke B (2023) Detection and prediction of land use changes and population dynamics in the Gorganrud River basin, Iran. Land Degradation & Development 34(10):2990-3002
Golfam P, Ashofteh P S (2023) Application of the fuzzy theory development in the uncertainty analysis of water supply system performance indexes. Iran-Water Resources Research 19(1):84-101 (In Persian)
Guilan Province Agricultural Jihad Organization (2021) Performance reports.
Hargreaves G H, Samani Z A (1982) Estimating potential evapotranspiration. Journal of the Irrigation and Drainage Division 108(3):225-230
Hargreaves G H, Samani Z A (1985) Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture 1(2):96-99
Janjić J, Tadić L (2023) Fields of application of SWAT hydrological model-A review. Earth 4(2):331-344
Kandel S, Gyawali B, Shrestha S, Zourarakis D, Antonious G, Gebremedhin M, Pokhrel B (2023) Estimation of runoff and sediment yield in response to temporal land cover change in Kentucky, USA. Land 12(1):147
Langat P K, Kumar L, Koech R (2019) Identification of the most suitable probability distribution models for maximum, minimum, and mean streamflow. Water 11(4):734
Lu D, Mausel P, Brondizio E, Moran E (2004) Change detection techniques. International Journal of Remote Sensing 25(12):2365-2401
Mander W J (1994) Dictionary of global climatic change. 2nd Revised ed., VCL Press, London
Mengistu A G, Woldesenbet T A, Dile Y T, Bayabil H K, Tefera G W (2023) Modeling impacts of projected land use and climate changes on the water balance in the Baro basin, Ethiopia. Heliyon 9(3):e13965
Moriasi D N, Arnold J G, Van Liew M W, Binger R L, Harmel R D, Veith T (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the American Society of Agricultural Engineers 50(3):885-900
Moriasi D N, Arnold J G, Van Liew M W, Bingner R L, Harmel R D, Veith T L (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50(3):885-900
Nash J, Sutcliffe J (1970) River flow forecasting through conceptual models: Part 1. A discussion of principles, Journal of Hydrology 10:282‐290
Omani Tajrishi M, Abrishamchi A (2006) River flow simulation using SWAT and GIS Model. 7th International Seminar on River Engineering, February 24-26, Ahvaz Shahid Chamran University 1-8 (In Persian)
Reungsang P, Kanwar R S, Srisuk K (2010) Application of SWAT model in simulating stream flow for the Chi River Subbasin II in Northeast Thailand. Trends Research in Science and Technology 2(1):23-28
Rouholahnejad E, Abbaspour K C, Vejdani M, Srinivasan R, Schulin R, Lehmann A (2012) Parallelization framework for calibration of hydrological models. Environmental Modelling & Software 31:28–36
Sadeghi S H R, Sharifi F, Forootan E, Rezae M (2005) Quantitative performance evaluation watershed management measures (Case Study: Keshar Sub -Watershed). Journalof Pajouhesh and Sazandegi 65:96-102 (In Persian)
Serrat-Capdevila A, Valdés J B, Pérez J G, Baird K, Mata L J, Maddock T (2007) Modeling climate change impacts modelling. International Journal of Climatology 27:1547-1578
Shaygan M, Alimohammadi A, Rohani H (2011) Hydrological modeling of Taleghan basin in GIS environment using SAWT model. Iranian Journal of Remote Sensing and GIS Iran 2:1-18 (In Persian)
Sheikh V (2006) Soil moisture prediction: Bridging event and continuous runoff modelling. Wageningen University and Research 1-208
Siriwardena L, Finlayson B L, McMahon T A (2006) The impact of land use change on catchment hydrology in large catchments: The Comet River, Central Queensland, Australia. Journal of Hydrology 326(1-4):199-214
Tang F F, Xu H S, Xu Z X (2012) Model calibration and uncertainty analysis for runoff in the Chao River Basin using sequential uncertainty fitting. Journal Procedia Environmental Sciences 13:1760-1770
Van Liew M W, Arnold J G, Garbrecht J D (2003) Hydrologic simulation on agricultural watersheds: Choosing between two models. Transaction of the AEAE 46(6):1539-1551
Wang G, Yang H, Wang L, Xu Z, Xue B (2014) Using the SWAT model to access impacts on land use changes on runoff generation in headwaters. Hydrological Process 28(3):1032-1042
Wei W, Chen L, Fu B, Huang Z, Wu D, Gui L (2007) The effect of land uses and rainfall regimes on runoff and soil erosion in the semi-arid loess hilly area, China. Journal of Hydrology 335:247-258
Yarahmadi D (2014) Hydroclimatological analysis of Urmia Lake surface oscillations. Natural Geography Research, Thirty-Second Year 20:77-92 (In Persian)
Yu E, Liu X, Li J, Tao H (2023) Calibration and evaluation of the WRF-Hydro model in simulating the streamflow over the arid regions of northwest China: A case study in Kaidu River Basin. Sustainability 15(7):6175
Zuo D, Xu Z, Yao W, Jin S, Xiao P, Ran D (2016) Assessing the effects of changes in land use and climate on runoff and sediment yields from a watershed in the Loess Plateau of China. Science of the Total Environment 544:238-250