مدل‌سازی رواناب در حوضه‌های فاقد آمار با استفاده از داده‌های سنجش از دور (RS) و شبکه‌های عصبی مصنوعی (ANNs) (مطالعه موردی: حوضه دشت اردبیل)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد منابع آب، گروه علوم و مهندسی آب دانشگاه محقق اردبیلی، اردبیل، ایران.

2 دانشیار گروه مهندسی آب دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

3 استاد گروه مهندسی آب دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

4 استادیار گروه مهندسی آب دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

چکیده

اگرچه اخیراً مدل‌سازی بارش-رواناب چالش بزرگی به حساب نمی‌آید، اما این مورد همچنان در حوضه و یا زیرحوضه‌های فاقد آمار یکی از مسایل چالش برانگیز برای محققان این حوزه است. یکی از روش‌های نوین در این زمینه استفاده از تکنیک‌های سنجش از دور و استفاده از یادگیری ماشین (هوش مصنوعی)  بوده ‌است. در این تحقیق برای محاسبه رواناب در حوضه‌های فاقد آمار، از دو حوضه شامل حوضه ایستگاه هیدرومتری سامیان و حوضه ایستگاه هیدرومتری عموقین در دشت اردبیل استفاده شد. ایستگاه اول به عنوان خروجی حوضه دشت اردبیل و برای آموزش و واسنجی مدل و از ایستگاه دوم به عنوان حوضه فاقد آمار برای صحت‌سنجی و آزمون، انتخاب شدند. مدل‌سازی با استفاده از 9 پارامتر ورودی شامل فشار‌هوا، شاخص پوشش گیاهی (پوشش کم و زیاد)، دمای خاک، دمای سطح زمین، حجم آب خاک، رواناب، پتانسیل تبخیر و بارش انجام شد. همچنین، از یک پارامتر مربوط به آمار مشاهداتی ایستگاه‌ها، به عنوان خروجی استفاده شد. مدل‌سازی با استفاده از چهار مدل شامل NARX، ANN-ACO، ANN-GA، ANN-PSO انجام و برای ارزیابی دقت مدل‌ها از آماره‌های MSE، R2، RMSE، NSE و MAE استفاده شد. نتایج نشان دادند که مدل NARX به ترتیب و با دقت 0/001، 0/86، 0/039، 0/855 و 0/015 به وضوح نسبت به سایر مدل‌ها از برتری بسیار خوبی برخودار است. باتوجه به امکان دستیابی به نتایجی با دقت بالا و باتوجه به وجود حوضه‌های کم‌آمار و فاقد‌آمار در سرتاسر جهان، استفاده از روش‌های سنجش از دور در ترکیب با هوش مصنوعی می‌تواند بخشی از چالش‌های هیدرولوژیست‌ها را پاسخ دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modelling Ungauged Basins Using Remote Sensing (RS) Data and Artificial Neural Networks (ANNs) (Case Study: Ardabil Plain Basin)

نویسندگان [English]

  • Amin Akbari Majd 1
  • Javanshir Azizi Mobaser 2
  • Ali Rasoulzadeh 3
  • Mahsa Hasanpour Kashani 4
1 Master's Student of Water Resources, Department of Water Science and Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.
2 Associate Professor, Department of Water Science and Engineering, Range & Watershed Management, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
3 Professor, Department of Water Science and Engineering, Range & Watershed Management, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
4 Assistant Professor, Department of Water Science and Engineering, Range & watershed Management, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
چکیده [English]

Although rainfall-runoff modelling is not considered a big challenge recently, it is still one of the challenging issues for researchers in the basin or sub-basins without statistical data. One of the new methods in this field is the use of remote sensing techniques and the use of machine learning (artificial intelligence). In this research, to calculate the runoff in the basins without data, two basins were used including the basins for the Samian and the Amoghein hydrometric stations in Ardabil plain. The first station was chosen as the outlet of the Ardabil Plain basin for model training and calibration and the second station was used as the basin without data for verification and testing. Modelling was done using 9 input parameters including air pressure, vegetation cover index (low and high cover), soil temperature, ground surface temperature, soil water volume, runoff, evaporation potential and precipitation. Also, a parameter related to the observational data of the stations was used as an output. Modelling was done using four models of NARX, ANN-ACO, ANN-GA, ANN-PSO and the accuracy of the models were evaluated using MSE, R2, RMSE, NSE and MAE. The results showed that the NARX model is clearly superior to other models with an accuracy of 0.001, 0.86, 0.039, 0.855 and 0.015 respective to the above-mentioned measures. Remote sensing methods combined with artificial intelligence can respond to hydrologists’ challenges in data-scarce and ungauged basins around the world due to their ability to provide high-precision results.

کلیدواژه‌ها [English]

  • GIS
  • RS
  • NARX
  • ANN
  • Ungauged Basins
  • Runoff Precipitation Curve
Adamowski J, Karapataki C (2010) Comparison of multivariate regression and artificial neural networks for peak urban water-demand forecasting: Evaluation of different ANN learning algorithms. Journal of Hydrologic Engineering 15(10):729-743
Affandia A K, Watanabe K, Tirtomihardjo H (2007) Application of an artificial neural network to estimate groundwater level fluctuation. Journal of Spatial Hydrology 7(2(
Akhtar M, Ahmad N, Booij M J (2008) The impact of climate change on the water resources of Hindukush–Karakorum–Himalaya region under different glacier coverage scenarios. Journal of Hydrology 355(1-4):148-163
Alsumaiei A A (2020) A nonlinear autoregressive modeling approach for forecasting groundwater level fluctuation in urban aquifers. Water 12(3):820
Amirahmadi A, Moali Ahari N, Ahmadi T (2013) Determining possible subsidence areas of Ardabil plain using GIS. In Persian
Amisigo B A, van de Giesen N, Rogers C, Andah W E I, Friesen J (2008) Monthly streamflow prediction in the Volta Basin of West Africa: A SISO NARMAX polynomial modelling. Physics and Chemistry of the Earth, Parts A/B/C 33(1):141-150
Azad A, Farzin S, Kashi H, Sanikhani H, Karami H, Kisi O (2018) Prediction of river flow using hybrid neuro-fuzzy models. Arabian Journal of Geosciences 11(22):718
Balamurugan R, Natarajan A M, Premalatha K (2015) Stellar-mass black hole optimization for Biclustering Microarray Gene Expression Data. Applied Artificial Intelligence 29(4):353-381
Basheer I A, Hajmeer M (2000) Artificial neural networks: fundamentals, computing, design, and application. Journal of Microbiological Methods 43(1):3-31
Bastola S, François D (2012) Temporal extension of meteorological records for hydrological modelling of Lake Chad Basin (Africa) using satellite rainfall data and reanalysis datasets. Meteorological Applications 19(1):54-70
Bastola S, Misra V (2014) Evaluation of dynamically downscaled reanalysis precipitation data for hydrological application. Hydrological Processes 28(4):1989-2002
Bianchi L, Dorigo M, Gambardella L M, Gutjahr W J (2009) A survey on metaheuristics for stochastic combinatorial optimization. Natural Computing 8:239-287
Bingeman A K, Kouwen N, Soulis E D (2006) Validation of the hydrological processes in a hydrological model. Journal of Hydrologic Engineering 11(5):451-463
Casella G (2002) Statistical inference. Second ed.,  Duxbury/Thomson Learning, Pacific Grove, CA, 556 p
Chen X Y, Chau K W, Busari A O (2015) A comparative study of population-based optimization algorithms for downstream river flow forecasting by a hybrid neural network model. Engineering Applications of Artificial Intelligence 46:258-268
Dehghani R, Poudeh H T (2021) Applying hybrid artificial algorithms to the estimation of river flow: A case study of Karkheh catchment area. Arabian Journal of Geosciences 14(9):768 (In Persian(
Deneubourg J-L, Aron S, Goss S, Pasteels J M (1987) Error, communication and learning in ant societies. European Journal of Operational Research 30(2):168-172
Draper N R, Smith H (1998) Applied regression analysis (Vol. 326). John Wiley & Sons,
Fabio D N, Abba S, Pham B Q, Towfiqul Islam A R M, Talukdar S, Francesco G (2022) Groundwater level forecasting in Northern Bangladesh using nonlinear autoregressive exogenous (NARX) and extreme learning machine (ELM) neural networks. Arabian Journal of Geosciences 15(7):647
Fraser A (1957a) Simulation of genetic systems by automatic digital computers I. Introduction. Australian Journal of Biological Sciences 10(4):484-491
Fraser A (1957b) Simulation of genetic systems by automatic digital computers I, Effects of Linkage on Rates of Advance Under Selection. Australian Journal of Biological Sciences 10(4):492-500
Gaur S, Ch S, Graillot D, Chahar B R, Kumar D N (2013) Application of artificial neural networks and particle swarm optimization for the management of groundwater resources. Water Resources Management 27(3):927-941
Glantz S A, Slinker B K, Neilands T B (1990) Primer of applied regression and analysis of variance. Mc Graw Hill. Inc., New York
Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote sensing of Environment 202:18-27
Goswami M, O’connor K, Bhattarai K (2007) Development of regionalisation procedures using a multi-model approach for flow simulation in an ungauged catchment. Journal of Hydrology 333(2-4):517-531
Guan X, Zhang J, Yang Q, Tang X, Liu C, Jin J, Wang G (2020) Evaluation of precipitation products by using multiple hydrological models over the upper Yellow River Basin, China. Remote Sensing 12(24):4023
Guang-Bin H (2003) Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Transactions on Neural Networks 14(2):274-281
He S, Gu L, Tian J, Deng L, Yin J, Liao Z, Hui Y (2021) Machine learning improvement of streamflow simulation by utilizing remote sensing data and potential application in guiding reservoir operation. Sustainability 13(7):3645
Hernández-Bedolla J, García-Romero L, Franco-Navarro C D, Sánchez-Quispe S T, Domínguez-Sánchez C (2023) Extreme runoff estimation for ungauged watersheds using a new multisite multivariate stochastic model MASVC. Water 15(16):2994
Holland J H (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press, p
Huang Q, Qin G, Zhang Y, Tang Q, Liu C, Xia J, Post D (2020) Using remote sensing data‐based hydrological model calibrations for predicting runoff in ungauged or poorly gauged catchments. Water Resources Research 56(8(
Hydrogeol J (2010) The relation between karst spring discharge and rainfall by cross-correlation analysis (Campania, southern Italy). Hydrogeology Journal 18:1881-1895
Hydrology A N N (2000) Artificial neural networks in hydrology. I: Preliminary concepts. Journal of Hydrologic Engineering 5(2):115-123
Hyndman R J, Koehler A B (2006) Another look at measures of forecast accuracy. International Journal of Forecasting 22(4):679-688
Jemcov I, Petric M (2009) Measured precipitation vs. effective infiltration and their influence on the assessment of karst systems based on results of the time series analysis. Journal of Hydrology 379(3):304-314
Joo C, Koo J, Yu M (2002) Application of short-term water demand prediction model to Seoul. Water Science and Technology 46(6-7):255-261
Kalra A, Aryal A, Bhusal A, Gupta R (2023) Floodplain mapping of ungauged watershed using HEC models and PERSIANN precipitation. Paper Presented at the World Environmental and Water Resources Congress
Kanishka G, Eldho T (2020) Streamflow estimation in ungauged basins using watershed classification and regionalization techniques. Journal of Earth System Science 129:1-18
Khaki M, Yusoff I, Islami N (2015) Simulation of groundwater level through artificial intelligence system. Environmental Earth Sciences 73:8357-8367
Khalili K, Abbaszade afshar m, Nazeri Z (2014) Compared to the normal mechanism becomes the normal monthly rainfall data from different regions of Iran. Water and Soil 28(2):365-372 (In Persian(
Kisi O, Alizamir M, Zounemat-Kermani M (2017) Modeling groundwater fluctuations by three different evolutionary neural network techniques using hydroclimatic data. Natural Hazards 87(1):367-381
Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics 2(2):164-168
Li H, Lu Y, Zheng C, Yang M, Li S (2019) Groundwater level prediction for the arid oasis of Northwest China based on the artificial bee colony algorithm and a back-propagation neural network with double hidden layers. Water 11(4):860
Li K, Coe M, Ramankutty N, De Jong R (2007) Modeling the hydrological impact of land-use change in West Africa. Journal of Hydrology 337(3-4):258-268
Lin T-N, Giles C L, Horne B G, Kung S-Y (1997) A delay damage model selection algorithm for NARX neural networks. IEEE Transactions on Signal Processing 45(11):2719-2730
Maswood M, Hossain F (2016) Advancing river modelling in ungauged basins using satellite remote sensing: The case of the Ganges–Brahmaputra–Meghna basin. International Journal of River Basin Management 14(1):103-117
MATLAB V (2013) 8.2. 0.701. The MathWorks Inc 2013
Meresa H (2019) Modelling of river flow in ungauged catchment using remote sensing data: Application of the empirical (SCS-CN), artificial neural network (ANN) and hydrological model (HEC-HMS). Modeling Earth Systems and Environment 5:257-273
Merz R, Blöschl G (2004) Regionalisation of catchment model parameters. Journal of Hydrology 287(1-4):95-123
Mirarabi A, Nassery H, Nakhaei M, Adamowski J, Akbarzadeh A, Alijani F (2019) Evaluation of data-driven models (SVR and ANN) for groundwater-level prediction in confined and unconfined systems. Environmental Earth Sciences 78(15):1-15
Mishra P, Babu R R (2022) Remote Sensing and Geographic Information System (GIS) based runoff estimation from an agricultural watershed. Journal of Soil and Water Conservation 21(2):167-175
Muñoz-Sabater J, Dutra E, Agustí-Panareda A, Albergel C, Arduini G, Balsamo G, Thépaut J N (2021) ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth System Science Data 13(9):4349-4383
Muñoz Sabater J (2019) ERA5-land monthly averaged data from 1981 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Earth System Science Data 55:5679-5695
Nash J E, Sutcliffe J V (1970) River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology 10(3):282-290
Nogueira Filho F J M, Souza Filho F d A, Porto V C, Vieira Rocha R, Sousa Estácio Á B, Martins E S P R (2022) Deep learning for streamflow regionalization for ungauged basins: Application of long-short-term-memory cells in semiarid regions. Water 14(9):1318
Noor H M, Ndzi D, Yang G, Safar N Z M (2017). Rainfall-based river flow prediction using NARX in Malaysia. Paper presented at the 2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA(
Oudin L, Andréassian V, Perrin C, Michel C, Le Moine N (2008) Spatial proximity, physical similarity, regression and ungaged catchments: A comparison of regionalization approaches based on 913 French catchments. Water Resources Research 44(3(
Padilla A, Pulido-Bosch A (1995) Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis. Journal of Hydrology 168(1):73-89
Panagopoulos G, Lambrakis N (2006) The contribution of time series analysis to the study of the hydrodynamic characteristics of the karst systems: Application on two typical karst aquifers of Greece (Trifilia, Almyros Crete). Journal of Hydrology 329(3):368-376
Pasteels J M, Deneubourg J-L, Goss S (1987) Self-organization mechanisms in ant societies. I: Trail recruitment to newly discovered food sources. Experientia: Supplementum (54):155-175
Post D A (2009) Regionalizing rainfall–runoff model parameters to predict the daily streamflow of ungauged catchments in the dry tropics. Hydrology Research 40(5):433-444
Rezaei M J, Rezaei M R (2020) The estimation of groundwater level changes using four different techniques of evolutionary neural network, case study of Dasht-e-Abbas plain, Ilam province. Watershed Engineering and Management 12(3):737-755 (In Persian(
Rostamzadeh H, Asadi E, Jararzadeh J (2015) Evaluation of the groundwater table using multi-criteria decision making and spatial analysis, case study: Ardebil Plain. Journal of Spatial Analysis Environmental Hazards 2(1):31-42 (In Persian(
Shao Y, Zhao J, Xu J, Fu A, Li M (2022) Application of rainfall-runoff simulation based on the NARX Dynamic neural network model. Water 14(13):2082
Shen Y, Liu D, Jiang L, Yin J, Nielsen K, Bauer-Gottwein P, Wang J (2020) On the contribution of satellite altimetry-derived water surface elevation to hydrodynamic model calibration in the han river. Remote Sensing 12(24):4087
Sobhani B, Nasiri f (2022) Agro-ecological zonation of canola cultivation in Ardebil Plain. Journal of Applied Researches in Geographical Sciences 22(65):61-78 (In Persian(
Tarpanelli A, Santi E, Tourian M J, Filippucci P, Amarnath G, Brocca L (2018) Daily river discharge estimates by merging satellite optical sensors and radar altimetry through artificial neural network. IEEE Transactions on Geoscience and Remote Sensing 57(1):329-341
Thapa S, Zhao Z, Li B, Lu L, Fu D, Shi X, Qi H (2020) Snowmelt-driven streamflow prediction using machine learning techniques (LSTM, NARX, GPR, and SVR). Water 12(6):1734
Tiwari D K, Tiwari H, Nateriya R (2022) Geomorphology-wavelet based approach to rainfall runoff modeling for data scarce semi-arid regions, Kolar river catchment, India. Journal of Engineering Research 10(1B):29-40
Toksarı M D (2007) Ant colony optimization approach to estimate energy demand of Turkey. Energy Policy 35(8):3984-3990
Trenberth K E, Smith L, Qian T, Dai A, Fasullo J (2007) Estimates of the global water budget and its annual cycle using observational and model data. Journal of Hydrometeorology 8(4):758-769
Trichakis I C, Nikolos I K, Karatzas G P (2011) Artificial Neural Network (ANN) based modeling for karstic groundwater level simulation. Water Resources Management 25(4):1143-1152
Wagener T, Wheater H, Gupta H V (2004) Rainfall-runoff modelling in gauged and ungauged catchments.  World Scientific, 4-8 p
Xu C-Y (1999) Estimation of parameters of a conceptual water balance model for ungauged catchments. Water Resources Management 13:353-368
Xue H, Liu J, Dong G, Zhang C, Jia D (2022) Runoff estimation in the upper reaches of the heihe river using an LSTM model with remote sensing data. Remote Sensing 14(10):2488
Young A R (2006) Stream flow simulation within UK ungauged catchments using a daily rainfall-runoff model. Journal of Hydrology 320(1-2):155-172
Yu H, Wilamowski B M (2011) Levenberg-marquardt training. Industrial Electronics Handbook 5(12):1
Yu L, Liu K, Li K (2007) Ant Colony Optimization in continuous problem. Frontiers of Mechanical Engineering in China 2(4):459-462