کارآئی روش وزن‎دهی شواهد در محیط GIS، در تعیین فاکتور مؤثر بر فرو نشست دشت قزوین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری مهندسی منابع آب، گروه آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، دانشگاه تهران، کرج، ایران.

2 استاد گروه آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، تهران.

3 استادیار پژوهشی، پژوهشکده حفاظت خاک و آبخیزداری، تهران، ایران.

4 دکتری ژئوفیزیک، گروه سنجش از راه دور، سازمان زمینشناسی و اکتشافات معدنی کشور، تهران، ایران.

چکیده

تحکیم و فرونشست در دشت قزوین که در سال‎‌های اخیر تشدید شده است م‌ی‎تواند خسارات جبران‌­ناپذیر جانی، محیط‌­زیستی و مالی ایجاد نماید. عوامل متعددی مانند خصوصیات زمین­‌شناسی منطقه و شرایط آبخوان بر میزان فرونشست تأثیرگذار هستند، لذا جهت مدیریت فرونشست، شناخت پارامترهای مؤثر بر آن و میزان ارتباط آنها با هم ضروری است. در این مطالعه برای محاسبه بلندمدت فرونشست از داده‌­های سنجنده SENTINEL-1 در بازده زمانی 2015 تا 2021 و روش تداخل­‌سنجی تفاضلی راداری (D-InSAR) استفاده شده است. بیشترین مقدار فرونشست دشت قزوین در سال‎های 2015 تا 2021، برابر با 47 سانتی متر بوده است که در جنوب غربی استان رخ داده است. تأثیر فاکتورهای مؤثر بر فرونشست با بررسی فاکتورهای افت سطح ایستابی، هدایت­ هیدرولیکی، شیب، ارتفاع، کاربری اراضی، ضخامت لایه ­ریزدانه، زمین­‌شناسی و جنس لایه‌­های آبخوان با استفاده از رویکرد وزن­‌دهی شواهد (Weight of Evidence, WoE) بر توزیع مکانی و مقدار فرونشست در محیط GIS سنجیده شده است و توسط نمودار ویژگی عملکرد گیرنده (, ROC  Receiver Operating Characteristic) نتایج آن صحت‌‎سنجی شد. نتایج نشان دادند مؤثرترین فاکتور بر فرونشست دشت قزوین با مقدار 3/77 متعلق به ضخامت لایه ریزدانه آبخوان بوده است و کاهش سطح ایستابی در رده چهارم تأثیرگذاری بوده است. همچنین، نقشه پتانسیل خطر فرونشست که با استفاده از مجموع وزنی فاکتورهای مؤثر به دست آمد توانست با دقت مناسب 0/87 توزیع مکانی فرونشست آینده را خیلی خوب پیش‌­بینی نماید. در نهایت نتیجه می‌‎شود با آنکه تغییرات سطح ایستابی جز عوامل شروع کننده فرونشست است، اما شدت و گسترگی آن به ضخامت لایه ریزدانه در منطقه بسیار وابسته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Performance of the Evidence Weighting in GIS for Determining the Effective Factors on the Land Subsidence in Qazvin Plain

نویسندگان [English]

  • Mahdieh Janbaz Fotamy 1
  • Majid Kholghi 2
  • Abdolnabi Abdeh Kolahchi 3
  • MahAsa Roostaei 4
1 Ph.D. of Water Resource Management, University of Tehran, Karaj, Iran.
2 Professor, Irrigation & Reclamation Eng. Dept, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
3 Assistant Professor, Soil Conservation and Watershed Management Research Institute (SCWMRI), ARREO, Tehran, Iran.
4 Ph.D. in Geophysics, Geological Survey of Iran (G.S.I.), Tehran, Iran.
چکیده [English]

Nowadays, intensified consolidation and land-subsidence led to irreparable damages to financial, environmental and human resources. In this research, land subsidence rate was investigated according to the impacts of the main factors of the aquifer including the geological and hydrodynamic characteristics. Long-term subsidence map was prepared for Qazvin plain based on SENTINEL-1 satellite data from 2015 to 2021 using Differential Interferometry SAR (D-InSAR) method. The maximum of land subsidence value in Qazvin Plain during 2015 to 2021 was equal to 47 cm occurred in southwest areas of the Qazvin province. The subsidence spatial distribution was analyzed according to the Weight-of-Evidence (WOE) method to reveal the aquifer characteristic effects. The water-table decline, hydraulic conductivity, slope, land use, fine-grained soil thickness, geology, and bedrock depth were used in WoE method to determine the impact of each factor on subsidence. The results of WoE, land subsidence hazard potential maps were validated using Receiver Operating Characteristic (ROC) diagram. The most effective land subsidence factor in the Qazvin plain were the thickness of fine-grained soil with a value of 3.77, while the influence of water level decline was ranked fourth. The land subsidence potential hazard map was able to predict the future land subsidence with an accuracy of 0.87 that indicated a very good prediction. Although water table decline was responsible for the land-subsidence in general, the results of this study indicated that the thickness of fine-grained soil layer was the most effective factor on the land-subsidence phenomenon.

کلیدواژه‌ها [English]

  • Land-Subsidence
  • Impact Factors
  • Weight of Evidence
  • ROC Curve
  • GIS
Abidin H Z, Andreas H, Gamal M, Gumilar I, Napitupulu M, Fukuda Y, Deguchi T, Maruyama Y, Riawan E (2010) Land subsidence characteristics of the Jakarta Basin (Indonesia) and its relation with groundwater extraction and sea level rise. Chapter in
Groundwater Response to Changing Climate, CRC Press
Abidin H Z, Djaja R, Darmawan D, and et al. (2001) Land subsidence of Jakarta (Indonesia) and its geodetic monitoring system. Natural Hazards 23:365–387
Alipour S, Motgah M, Sharifi M, Walter T R (2008) InSAR time series investigation of land subsidence due to groundwater overexploitation in Tehran, Iran. Second Workshop on Use of Remote Sensing Techniques for Monitoring Volcanoes and Seismogenic Areas 1:1–5
Amighpey M, Arabi S, Talebi A (2010) Studying Yazd subsidence using InSAR and precise leveling. Geosciences Journal 20(77):157-164 (In Persian)
Andaroodi E,  Sahrakaran B (2023) Vernacular Cultural Landscape of Qazvin’s Traditional Gardens: A Review of Basic Conepts and Analysis of Elements and Features within the Scope of Built Environment. The Monthly Scientific Journal of Bagh-e Nazar, 14(50):39-48. (In Persian)
Babaee S S, Mouavi Z, Roostaei M (2016) Time series analysis of SAR images using Small Baseline Subset (SBAS) and Persistent Scatterer (PS) approaches to determining subsidence rate of Qazvin Plain. JGST 5(4):95-111
Becker M W (2006) Potential for satellite remote sensing of ground water. Groundwater 44(2):306-318
Bonham-Carter G F (1994) Geographic information systems for geoscientists. Elsevier Science 398 pages
Bonham-Carter G F, Agterberg F P, Wright D F (1988) Integration of geological datasets for gold exploration in Nova Scotia. Photogrammetric Engineering and Remote Sensing 54(11):1585–1592
Bonham-Carter G F, Agterberg F P, Wright D F
Bonham-Carter G F, Agterberg F P (1990) Application of a microcomputer-based geographic information system to mineral potential mapping. Microcomputers in Geology 2:49-74
Chen Xx, Luo Zj, Zhou Sl (2014) Influences of soil hydraulic and mechanical parameters on land subsidence and ground fissures caused by groundwater exploitation. Journal of Hydrodynamics 26(1):155–164
Cianflone G, Tolomei C, Brunori C A, Monna S, Dominici R (2018) Landslides and subsidence assessment in the Crati Valley (Southern Italy) Using InSAR Data. Geosciences 8:67
Cigna F, Osmanoğlu B, Cabral-Cano E, Dixon T H, Ávila-Olivera J A, Garduño-Monroy V H, DeMets C, Wdowinski S (2012) Monitoring land subsidence and its induced geological hazard with Synthetic Aperture Radar Interferometry: A case study in Morelia, Mexico. Remote Sensing of Environment 117:146-161
Davis J, Goadrich M (2006) The relationship between Precision-Recall and ROC curves. In Proceedings of the 23rd international conference on Machine learning (ICML '06), Association for Computing Machinery New York NY USA 233–240
Fan F, Cui X, Yuan D, Wang J, Yang J, Wang S (2011) Weight of evidence method and its applications and development. Procedia Environmental Sciences 11:1412-1418
Faryabi M A (2023) fuzzy logic approach for land subsidence susceptibility mapping: The use of hydrogeological data. Environmental Earth Science 82:209
Galloway DL, Burbey TJ (2011) Review: Regional land subsidence accompanying groundwater extraction. Hydrogeology Journal 19:1459–1486
Gong W (2014) Long-term monitoring of geodynamic surface deformation using SAR interferometry. University of Alaska Fairbanks
Goyal S K, Chaudhary B S, Singh O, et al. (2010) Variability analysis of groundwater levels- AGIS-based case study. Journal of the Indian Society of Remote Sensing 38:355-364
Haghighatmehr P, Valadanxouj M J, Tajik R, Jabari S, Sahebi M R, Eslami R, Ganjian M, Dehghani M (2012) Time series analysis of Hasjtgerd subsidence using radar interferometry and global positioning system. Geosciences Journal 22(85):105-114 (In Persian)
Janbaz Fotamy M, Kholghi M, Abdeh Kolahchi A, Roostaei M (2020) Land subsidence assessment due to groundwater exploration by using differential radar interferometry technique, case study: Qazvin Province. Iran-Water Resources Research16(3):133-147. (In Persian)
Lien T, Cheng C, Hwang C, Crossley D (2014) Assessing active faulting by hydrogeological modeling and superconducting gravimetry: A case study for Hsinchu Fault, Taiwan. Journal of Geophysical Research: Soil Earth 1–17
Mahmoudpour M, Khamehchiyan M, Nikudel M R, Ghassemi M R (2016) Numerical simulation and prediction of regional land subsidence caused by groundwater exploitation in the southwest plain of Tehran, Iran. Engineering Geology Volume 201:6-28
Metz CE (1978) Basic principles of ROC analysis. Seminars in Nuclear Medicine 8(4):2832-98
Mohammady M, Pourghasemi H R, Amiri M (2019) Assessment of land subsidence susceptibility in Semnan Plain (Iran): A comparison of support vector machine and weights of evidence data mining algorithms. Natural Hazards 99:951-971
Mohebbi Tafreshi G, Nakhaei M, Lak R (2021) Land subsidence risk assessment using GIS fuzzy logic spatial modeling in Varamin aquifer, Iran. Geo Journal 86:1203-1223
Modoni G, Darini G, Spacagna RL, Saroli M, Russo G, Croce P (2013) Spatial analysis of land subsidence induced by groundwater withdrawal. Engineering Geology 167:59-71
Nameghi H, Hosseini S M, Sharifi M B (2013) An analytical procedure for estimating land subsidence parameters using field data and InSAR images in Neyshabur plain. Scientific Quarterly Journal of Iranian Association of Engineering Geology 6(1&2):33-50 (In Persian)
Oh H, Lee S (2010) Assessment of ground subsidence using GIS and the weights-of-evidence model. Engineering Geology 115:36-48
Salehi Moteahd F, Hafezi Moghaddas N, Lashkaripour G R, Dehghani M (2019) Geological parameters affected land subsidence in Mashhad plain, north-east of Iran. Environmental Earth Science 78:405
Liu Y, Helm D C (2008) Inverse procedure for calibrating parameters that control land subsidence caused by subsurface fluid withdrawal. Water Resources Research 44:W07423
Sekkeravani M A, Bazrafshan O, Pourghasemi H R, and et al. (2022) Spatial modeling of land subsidence using machine learning models and statistical methods. Environmental Science and Pollution Research 29:28866–28883
Shahi H, Kamkar Rouhani A (2014) A GIS-based weights-of-evidence model for mineral potential mapping of hydrothermal gold deposits in Torbat-e-Heydarieh area. Journal of Mining and Environment 5(2):79-89
Strozzi T, Wegmuller U, Tosi L, Bitelli G, Spreckels V (2001) Land subsidence monitoring with differential SAR interferometry. Photogrammetric Engineering & Remote Sensing 67(11):1261–1270
Sundell J, Haaf E, Norberg T, Alén C, Karlsson M, Rosén L (2019) Risk mapping of groundwater drawdown-induced land subsidence in heterogeneous soils on large areas. Risk Analysis 39:105-124
Thiart C, Bonham-Carter G F, Agterberg F P (2003) Conditional independence in weights of evidence: application of an improved test. IAMG, International Association for Mathematical Geology, Portsmouth, UK.
Tzampoglou P, Ilia I, Karalis K, Tsangaratos P, Zhao X, Chen W (2023) Selected worldwide cases of land subsidence due to groundwater withdrawal. Water 15(6):1094