برآورد عملکرد مدل های رگرسیون توانی در تعیین هندسه هیدرولیکی مقطع پر کانال های پایدار (مطالعه موردی: حوضه تروال)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار/گروه مهندسی مرتع و آبخیزداری - دانشکده منابع طبیعی، دانشگاه کردستان.

2 استادیار/گروه ژئومورفولوژی- دانشکده منابع طبیعی، دانشگاه کردستان

3 دانش آموخته کارشناسی ارشد رشته مخاطرات طبیعی، گروه ژئومورفولوژی، دانشگاه کردستان

چکیده

توسعه روابط هندسه هیدرولیکی در پروژه های احیای رودخانه و مدلسازی هیدرولوژیکی اهمیت قابل توجهی برخوردار دارد. از اینرو، ارائه روابط منطقه ای جهت فرموله نمودن ابعاد مقطع پر کانال با استفاده از سطح حوضه زهکشی بالادست(به عنوان متغیر مستقل) در حوضه تروال، به عنوان هدف اصلی این تحقیق مد نظر قرار گرفت. بررسی های میدانی در 28 – 13 آبان ماه 1394 در طول رودخانه های اصلی چم سیس، سنگ سیاه، اوزون دره و رودخانه اصلی تروال انجام گرفت و فرموله کردن ابعاد مقطع پر کانال های پایدار بر مبنای سطح حوضه بالادست و با استفاده از داده های 22 مقطع پایدار انجام شد. نتایج حاصله نشان داد که مدل های چندبخشی در فرموله کردن رابطه بین سطح حوضه بالادست و خصوصیات مقطع کانال پایدار، بهترین عملکرد را داشتند. با این حال، هیچ رابطه مناسبی برای فرموله نمودن ابعاد مقطع کانال پایدار(سطح مقطع و عرض بالای مقطع پر کانال) در حوضه های با مساحت حوضه بالادست بیش از 1165کیلومترمربع معرفی نشد. این امر می تواند به دلیل تغییر در رابطه بارش – رواناب و اثرات بیشتر فعالیت های انسانی در حوضه های بزرگتر باشد. نتایج بدست آمده از این تحقیق، اطلاعات مفیدی را فراهم می نماید که در پروژه های احیای رودخانه و طراحی سازه های آبی کاربرد دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Efficiency of power regression model for stable bankfull hydraulic geometry (a case study: Tarwal Basin)

نویسندگان [English]

  • K. Osati 1
  • H. Nayyeri 2
  • P. Osmani 3
1 Assistant professor, Dept. of Range and Watershed Management, College of Natural Resources, University of Kurdistan, Iran.
2 Assistant professor, Dept. of Geomorphology, College of Natural Resources, University of Kurdistan, Iran
3 Graduated student (M.Sc.) in Natural Hazards, Dept. of Geomorphology, College of Natural Resources, University of Kurdistan
چکیده [English]

The development of hydraulic geometry relationships has utility in different applications such as stream restoration design and hydrological modeling. Therefore, the main objective of this study was to develop regional relationships for formulizing bankfull channel dimensions of Tarwal basin by drainage area, as an independent variable. Several fieldworks, focused on Chameh Sis, Sangeh Siah, Ozon Dareh tributaries as well as main channel of Tarwal River, were conducted between 4 -19 November 2015. Twenty-two stable-channel cross sections used to formulize bankfull channel dimensions by drainage area. Our results indicated that piecewise models is the best model for relating bankfull channel dimensions to drainage area. Relative Root Mean Squared Error (RRMSE) values>0.4 resulted for simple power regression models for channel bankfull dimensions versus drainage area relationships reveal that simple power regression models were not suitable for predicting hydraulic geometry. Although there were no ideal model to estimate bankfull channel dimensions in basins larger than 1165 Km2. This may be a result of significant changes in rainfall- runoff relationships or the influences of anthropogenic disturbances in large basins. Our results provide useful data for stream restoration as well as water structure design.

کلیدواژه‌ها [English]

  • Tarwal Basin
  • Stable channel
  • Piecewise Models
  • Hydraulic Geometry
Castro JM, Jackson PL (2001) Bankfull discharge recurrence intervals and regional hydraulic geometry relationships: patterns in the Pacific Northwest, USA. Journal of the American Water Resources Association 37 (5):1249–1262

Chang T, Fang Y, Wu H, Mecklenburg D (2004) Characteristics of bankfull channel dimensions in southeast Ohio, self-sustaining solutions for streams, wetlands and watershed. American Society of Agricultural Engineering, 8p

Cleveland WS (1979) Robust locally-weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74:829–836, doi:10.2307/2286407

Cleveland WS, Devlin SJ, Grosse E (1988) Regression by local fitting methods, properties, and computation algorithms. Journal of econometrics 37(1):87–114, doi:10.1016/0304-4076(88)90077-2

Cleveland WS, Grosse E (1991) Computational methods for local regression. Statistics and Computing 1:47–62, doi:10.1007/BF01890836

Cohen RA (1999) An introduction to PROC LOESS for local regression. 24th SAS Users Group International Conference, Pap. 273, SAS Institute Inc. Cary, North Carolina, USA: 9p[Available at http://www.ats.ucla.edu/stat/sas/library/loesssugi.pdf]

Dunne T, Leopold LB (1978) Water in environmental planning. W. H. Freeman Company, San Francisco, 818 p

Faustini JM, Kaufmann PhR, Herlihy AT (2009) Downstream variation in bankfull width of wadeable streams across the conterminous United States. Geomorphology 108:292–311

Freund RJ, Wilson WJ, Sa P (2006) Regression analysis: statistical modeling of a response variable. Academic Press, Second edition, 459p

Guthrie W (2012) Process modeling in NIST/SEMATECH e-handbook of statistical methods. edited by C. Croarkin and P. Tobias., National Institute of Standards and Technology, Gaithersburg, Md., Electronic document [Available at http://www.itl.nist.gov/div898/handbook/]

Hardy RJ (2006) Fluvial geomorphology. Progress in Physical Geography 30(4):553–567, doi:10.1191/ 0309133306pp498pr

Harrelson CC, Rawlins CL, Potyondy JP (1994) Stream channel reference sites: an illustrated guide to field technique. General Technical Report RM-245, Fort Collins, Colorado, United States Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, 61 p

Helsel DR, Hirsch RM (2002) Statistical methods in water resources, techniques of water-resources investigations. Book 4, chap. A3, U.S. Geological Survey, 522p[Available at http://water.usgs.gov/ pubs/twri/twri4a3/]

Hey RD, Thorne CR (1986) Stable channels with mobile gravel beds. Journal of Hydraulic Engineering 112(8):671–689

Jamieson PD, Porter JR, Wilson DR (1991) A test of the computer simulation model ARCWHEAT on wheat crops grown in New Zealand. Fields Crop Research 27:337 -350

Johnson PA, Fecko BJ (2008) Regional channel geometry equations: a statistical comparison for physiographic provinces in the eastern US. River Research and Applications 24(6):823–834

Knighton D (1998) Fluvial forms and processes: a new perspective. Arnold, New York. 383p

Lawlor SM (2004) Determination of channel-morphology characteristics, bankfull discharge, and various design-peak discharges in western Montana. U.S. Geological Survey Scientific Investigations Report 2004-5263, 19p. http://pubs.usgs.gov/sir/ 2004/5263/pdf/sir_2004_5263.pdf

Leopold LB (1994) A view of the river. Harvard University Press, Cambridge, Massachusetts, ISBN-13: 978-0674018457, 298p

Leopold LB, Maddock JT (1953) The hydraulic geometry of stream channels and some physiographic implications. U.S. Geological Survey professional paper 282-B, 56p

Leopold LB, Wolman MG, Miller JP (1964) Fluvial processes in geomorphology. Freeman, San Francisco, California, ISBN: 0-486-68588-8, 522p

McCandless TL, Everett RA (2002) Maryland stream survey, bankfull discharge and channel characteristics of streams in the Piedmont hydrologic region. Chesapeake Bay Field Office CBFO-S02-01, U.S. Fish & Wildlife Service, prepared in cooperation with Maryland State Highway Administration and U.S. Geological Survey, 40p[available at www.fws.gov/r5cbfo]

Miller SJ, Davis D (2003) Optimizing Catskill Mountain regional bankfull discharge and hydraulic geometry relationships. in: watershed management for water supply systems: Proceedings of the American Water Resources Association 2003 International Congress, New York City, New York, June 29-July 2, 2003, 10p. http://www.catskillstreams.org/pdfs/catskill regionalcurves.pdf

Mulvihill CI, Baldigo BP, Miller SJ, DeKoskie D, DuBois J (2009) Bankfull discharge and channel characteristics of streams in New York State. U.S. Geological Survey scientific investigations report 2009-5144, 51p. http://pubs.usgs.gov/sir/2009/ 5144/pdf/sir2009-5144_mulvihil_bankfull_2revised508.pdf

Newson MD (2002) Geomorphological concepts and tools for sustainable river ecosystem management. Aquatic Conservation: Marine and Freshwater Ecosystems 12(4):365–379, doi:10.1002/aqc.532

Osmani P (2016) Analysis of geomorphologic equilibrium in Tarwal Basin (Kurdistan Province). M.Sc. Thesis in natural hazards, Supervision of Hadi nayyeri, advisor: Khaled Osati, Department of Geomorphology, Faculty of Natural Resources, University of Kurdistan, Iran, 134p (In Persian)

Powell RO, Miller SJ, Westergard BE, Mulvihill CI, Baldigo BP, Gallagher AS, Starr RR (2004) Guidelines for surveying bankfull channel geometry and developing regional hydraulic-geometry relations for streams of New York State. U.S. Geological Survey open-file report 03-92, 20p. http://ny.water.usgs.gov/pubs/of/of03092/of03-092.pdf

Rosenfeld JS, Post J, Robins G, Hatfield T (2007) Hydraulic geometry as a physical template for the river continuum: application to optimal flows and longitudinal trends in salmonid habitat. Canadian Journal of Fisheries and Aquatic Sciences 64(5):755–767

Rosgen DL (1996) Applied river morphology. Wildland Hydrology Books, second edition, Pagosa Springs, Colorado, ISBN-13: 978-0965328906, 350p

Sherwood J, Huitger C (2005) Bankfull characteristics of Ohio streams and their relation to peak streamflows. U.S. Geological Survey Scientific Investigations Report 2005-5153, 38p. http://pubs.usgs.gov/sir/2005/5153/pdf/Bankfull_book.pdf

Shreve R (1979) Models for prediction in fluvial geomorphology. Mathematical Geology 11(2):165–174, doi:10.1007/BF01028963

Soar PJ, Thorne CR (2001) Channel restoration design for meandering rivers. U.S. Army Corps of Engineers, Engineer Research and Development Center ERDC/CHL CR-01-1, Vicksburg, Mississippi, 416p

Tetra Tech EM Inc (2004) Assessment, geomorphic definition, and documentation of Kansas stream corridor reference reaches. Final Report for EPA Wetlands Grant CD 987073-01, Kansas City, Kans, 45p

USDA NRCS (United States Department of Agriculture, Natural Resources Conservation Service) (2007) Stream restoration design. National Engineering Handbook, part 654, USDA, NRCS, Washington, D.C, 1626p

USDA-NRCS (2007) developing regional relationships for bankfull discharge using bankfull indices. National engineering handbook part 654, Technical Supplement 5, Washington, D.C., 9pp

Wilkerson GV, Kandel DR, Perg LA, Dietrich WE, Wilcock PR, Whiles MR (2014) Continental-scale relationship between bankfull width and drainage area for single-thread alluvial channels. Water Resources Research 50:919–936, doi:10.1002/ 2013WR013916