طراحی سیستم زهکشی با استفاده از الگوریتم بهینه سازی چند هدفه NSGA-II با رویکرد اقتصادی – زیست محیطی

نوع مقاله: مقاله پژوهشی

نویسنده

استادیار/گروه علوم و مهندسی آب، دانشکده فنی مهندسی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران

چکیده

کنترل شوری و رفع مانداب از مهمترین دلایل انجام عملیات زهکشی در زمین های کشاورزی می باشد. تخلیه زهاب خارج شده به محیط زیست از مهمترین عوارض به کارگیری زهکش ها می باشد. از آنجا که کاهش عوارض زیست محیطی منجر به افزایش هزینه های اجرایی خواهد شد، هدف از انجام این مطالعه ارائه مدلی به منظور تعیین متغیرهای طراحی زهکش شامل قطر، عمق و فاصله دفن لوله ها به گونه ای است که ضمن توجه به محدودیتهای هیدرولیکی، طراحی زهکش دربرگیرنده اهداف اقتصادی (کاهش هزینه های اجرایی) و زیست محیطی (افزایش کیفیت زهاب خروجی) به صورت توام باشد. به این منظور از روش بهینه سازی NSGA-II که مختص مسائل چند هدفه می باشد، استفاده شده است. همچنین برای اعمال مدل پیشنهادی، اطلاعات شرکت کشت و صنعت سلمان فارسی مورد استفاده قرار گرفته است. نتایج نشان می دهد انتخاب عمق دفن بین 3/1 تا 8/1، فاصله 30 تا 80 متر و قطر 1/0 متر برای لوله زهکش، منجر به تحقق توامان هر دو هدف اقتصادی و زیست محیطی و حصول توسعه پایدار خواهد شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Drainage System Design by Multi-Objective Algorithm NSGA-II with Economic and Environmental Approach

نویسنده [English]

  • H. Mazandarani Zadeh
Assistant Professor, Water Sciences and Engineering Department, Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin, Iran
چکیده [English]

Salinity control and bog elimination is the most important reasons for agricultural land drainage. Drainage pipe installation depth, diameter and spacing are the important decision variables in subsurface drainage system design. Drain discharge to environment is the main complication of this system. Since the reduction of environment suicides leads to amplification of executive costs, the aim of this study is to present a model ,to define the design parameters, that not only economic objective (executive costs) to be considered but also environmental issues (increase the quality of drainage water) to be addressed. Due to different nature of economic and environmental objectives, NSGA II which is appropriate to solve multi-objective problems has been employed. For this purpose Agro-Industry Salman Farsi was chosen as a case study. Results show both economic and environmental goals, along with sustainable development, will be achieved simultaneously by the depth of pipes between 1.3 to 1.8, distance between 30 to 80 meters and 0.1 meter for pipe diameter.

کلیدواژه‌ها [English]

  • GA
  • Multi-Objective Optimization
  • Executive Cost
  • Environment
  • DESIGN PARAMETERS
Abraham A, Jain L and Goldberg R (2005) Evolutionary multiobjective optimization, theoretical advances and applications. Springer-Verlog, London, 7-32

Bhagu R Ch and Ghanshyam P V (2010) Optimal spacing in an array of fully penetrating ditches for subsurface drainage. Journal of Irrigation and Drainage Engineering, ASCE 136(1):63-67

Christen E W and Skehan D (2001) Design and management of subsurface horizontal drainage to reduce salt load. Journal of Irrigation and Drainage Engineering, ASCE 127(3):148-155

Deb K (2001) Multi-objective optimization using evolutionary algorithms. UK: Wiley, 518p

Deb K, Pratap A, Agarwal S and Meyarivan T (2002) A fast and elitist multi objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2): 182-197

Hornbuckle J W, Christen EW and Faulkner R D (2007) Evaluating a multi-level subsurface drainage system for improved drainage water quality. Agricultural Water Management 89(3): 208-216

Nazari B, Liaghat A, Parsinejad M and Naseri A (2008), Optimization of drainage depth based on the economical and environmental aspects, 5th workshop on Drainage and Environmental Engineering (In Persian)

Pazira E and Homaee M (2010), Salt leaching efficiency of subsurface drainage system at presence of diffusing saline water table boundary, 17th Word Congress of the International Commission of Agricultural Engineering (CIGR ). Qeuebec City, Canada

Razi F, Sotoodehnia A, Daneshkar Arasteh P and Akram M (2012), A laboratory test on the effect of drain installation depth on drain water salinity (from a Clay-Loam Soil Profile). Iranian Journal of Soil and Water Research 43(3):281-288 (In Persian)

Shao X H, Hou M M Chen LH, Chang T T and Wang W N (2012) Evaluation of subsurface drainage based on projection pursuit. Energy Procedia 16B:747-752

Smedema L K, Vlotman W F and Rycroft D (2004) Modern land drainage: planning, design and management of agricultural drainage systems. CRC Press, 462 p

Soleimani M, Parsinejad M and Nouri H (2013) Estimating subsurface drainage network installation cost (A case study: Behshahr). Watershed Management Research 26(1):34-41 (In Persian)

Sotoodehnia A, Razi F and Daneshkar Arasteh P (2014), Using SEEP/W numerical model to simulate drain installation depth effects on drain water salinity improvement. Iranian Journal of lrrigation and Drainage 8(1): 187-196 (In Persian)

Zadesh Pargo R, Mazandarani Zadeh H, and Daneshkar Araste P (2015), Subsurface drainage system design to minimize construction costs with steady-state consideration. Journal of Water Research in Agriculture 29(1): 117-128 (In Persian)