پس پردازش برونداد مدل WRF برای بارندگی روزانه در ایران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار / پژوهشکده هواشناسی، تهران.

2 دانشجوی کارشناسی ارشد /هواشناسی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران.

3 دانشیار /دانشگاه آزاد اسلامی ، واحد علوم و تحقیقات، تهران.

4 مربی/ پژوهشکده هواشناسی، تهران

چکیده

با اینکه امروزه مدل‌های پیش‌‌بینی عددی وضع هوا پیشرفت قابل توجهی کرده‌اند اما هنوز پیش‌بینی دقیق بارش نقطه‌ای، بسیار مشکل و چالش‌برانگیز است. همواره تلاش بر این بوده است که پیش‌بینی بارش به صورت دقیق‌تری با بهبود شرایط اولیه و پیکربندی مدل‌های پیش‌بینی عددی وضع هوا به دست آید. به این منظور تصحیح برونداد مدل یکی از راه‌هایی است که می‌توان انجام داد. در این پژوهش مدل میان‌مقیاس WRF با دو دامنه با گام‌های شبکه‌ای 45 و 15 کیلومتر برای یک دوره 6 ماهه از اول نوامبر 2008 تا 30 آوریل 2009 اجرا شده است. سپس برونداد مدل برای بارندگی‌های 24 ساعته با دو روش بهترین برآوردگر ساده و روش میانگین متحرک برای 205 ایستگاه هواشناسی همدید کشور تصحیح و پس‌پردازش شده است. داده‌های سه ماه اول برای آموزش و بقیه داده‌ها برای آزمون و مقایسه استفاده شده است. نمایه‌های آماری مانند درجه موازنه جرم، میانگین مطلق خطا و امتیاز مهارتی متناظر با آن برای پیش‌بینی‌های خام و بهبود یافته برای نشان دادن بهبود نتایج، محاسبه و مقایسه شده است. نتایج نشان داد که هر دو روش پس‌پردازش، برونداد مستقیم مدل را بهبود می‌بخشند؛ به گونه‌ای که میانگین مطلق خطا برای ایستگاه‌های مختلف در روش میانگین متحرک، بین 5 تا 50 درصد (با میانگین در حدود 25%) و در روش بهترین برآوردگر ساده به طور میانگین در حدود 13% بهبود یافته است.

کلیدواژه‌ها


عنوان مقاله [English]

WRF Model Output Postprocessing for Daily Precipitation over Iran

نویسندگان [English]

  • M Azadi 1
  • M. R Shirgholami 2
  • S Hajjam 3
  • F Sahraian 4
1 Assistant Professor, Atmospheric Science and Meteorological Research Center (ASMERC), Tehran, Iran
2 M.Sc. Student in Meteorology, Science and Research branch, Islamic Azad University, Tehran, Iran.
3 Associate Professor, Science and Research Branch, Islamic Azad University, Tehran, Iran.
4 Faculty member, Atmospheric Science and Meteorological Research Center (ASMERC), Tehran, Iran
چکیده [English]

Despite the fact that the quality of forecasts from numerical weather prediction (NWP) models has increased in recent years, yet exact forecast of precipitation is a difficult and challenging task. In order to obtain more accurate precipitation forecasts, efforts have been made to improve the models, formulations, and the accuracy of the initial conditions. One important alternative is to improve the model output via postprocessing.
In this paper, the WRF model was applied for a six month period from 1 November 2008 to 30 April 2009 with two nests using 45 and 15 Km grid. The model outputs were then postprocessed for 24-hour precipitation forecasts for 205 synoptic stations over Iran using two methods of the moving average (MA) and the best easy systematic estimator (BES). Data for the first three months were used for training and the rest of data were used for the test and comparison. Statistical scores including degree of mass balance (DMB), mean absolute error (MAE) and its corresponding skill score were calculated for both direct and postprocessed outputs.
Results showed that both methods improve the direct outputs of the model. The MA method decreased MAE for different stations from 5 to 50 percent. The mean of MAE decrease for all stations was about %25. In the BES method the average value of MAE for all stations is around 13 percent.

کلیدواژه‌ها [English]

  • Postprocessing
  • Verification
  • moving average
  • Best easy systematic estimator
  • WRF Model

آزادی، م.، جعفری، س.، میرزایی، ا. و عربلی، پ. (1385)، "پس پردازش برونداد مدل میان مقیاسMM5 برای دمای بیشینه وکمینه با استفاده از فیلترکالمن"، نشریه فیزیک زمین و فضا، 1، 1387، صص. 45-61.

آزادی، م.، جعفری، س. و کلاته سیفری، ز. (1388)، "ارزیابی عملکرد مدل WRF در ایران برای پیش­بینی بارش با استفاده از طرحواره­های فیزیکی مختلف: مطالعه موردی"، دوازدهمین کنفرانس دینامیک شاره­ها، دانشگاه صنعتی نوشیروانی، بابل، ایران.

شیرغلامی، م. (1389)، "پس پردازش برونداد مدل WRF برای بارندگی در ایران"، پایان نامه کارشناسی ارشد، دانشگاه آزاد اسلامی واحد علوم وتحقیقات تهران.

Chou, M. D. and Suarez, M. J. (1994), "An efficient thermal infrared radiation parameterization for use in general circulation models", NASA Tech. Memo. 104606, 3, 85p.

Eckel, F. A. and Mass, C. F. (2005), "Aspects of effective mesoscale, short-range ensemble forecasting", Wea. Forecasting, 20, pp. 328– 350.

Glahn, H. and Lowry, R. (1972), "The use of model output statistics (MOS) in objective weather forecasting", J. Appl. Meteor., 11, pp.1203–1211.

Homleid, M. (1995), "Diurnal corrections of short-term surface temperature forecasts using the Kalman filter", Wea. Forecasting, 10, pp. 689–707.

Hsieh, W. W. and Tang, B. (1998), "Applying neural network models to prediction and data analysis in meteorology and oceanography. Bull", Amer. Meteor. Soc., 79, pp. 1855– 1870.

Klein, W. H., Lewis, B. M. and Enger, I. (1959), "Objective prediction of five-day mean temperatures during winter",  J. Atmos. Sci., 16, pp. 672–682.

Kain, J. S. and Fritsch, J. M. (1990), "A one-dimensional entraining/ detraining plume model and its application in convective parameterization", J. Atmos. Sci., 47, pp. 2784-2802.

Kain, J. S. and Fritsch, J. M. (1993), "Convective parameterization for mesoscale models: The Kain-Fritcsh scheme. The representation of cumulus convection in numerical models, K. A. Emanuel and D.J. Raymond, Eds., Amer. Meteor. Soc., 246 p.

Lin, Y. L., Farley, R. D. and Orville, H. D. (1983), "Bulk parameterization of the snow field in a cloud model", J. Climate Appl. Meteor., 22, pp. 1065-1092.

Mccollor, D. and Stull, R. (2008), "Hydrometeoro-logical accuracy enhancement via postprocessing of numerical weather forecasts in complex terrain", Wea. Forecasting. 23, pp. 131-144.

Mellor, G. L. and Yamada, T. (1982), "Developement of a turbulence closure model for geophysical fluid problems", Rev. Geophys. Space Phys., 20, pp. 851-875.

Mlawer, E. J., Taubman, S. J.  Brown, P. D., Iacono, M. J.  and Clough, S. A. (1997),  "Radiative transfer for inhomogeneous atmosphere", RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102( D14), pp. 16663-16682.

Stensrud, D. J. and Yussouf, N. (2005), "Bias-corrected short-range ensemble forecasts of near surface variables", Meteor. Appl., 12, pp. 217–230.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M., Huang, X.-Y., Wang, W. and Powers, J. G. (2008), "A Description of the Advanced Research WRF Version 3" , NCAR Technical Note

Woodcock, F. and Engel, C. (2005), "Operational consensus forecasts", Wea. Forecasting, 20, pp. 101–111.