ارزیابی شبیه سازی رواناب حوزه های برفی با مدل شبیه‌سازی (SRM) و شبکه عصبی برای برآورد انرژی برقابی در مواجهه با کمبود آمار

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش آموخته/مقطع کارشناسی ارشد سازه های آبی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

2 دانشیار / گروه سازه های آبی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران.

3 مربی / پژوهشی مرکز تحقیقات خاک و آبخیزداری جهاد کشاورزی، تهران، ایران

چکیده

نیروگاه‌های برقابی کوچک می‌توانند در تولید انرژی نقش زیادی ایفا نمایند.  سرشاخه‌های رودخانه‌ها مکان‌های مناسبی برای احداث این نیروگاه‌ها می‌باشند، ولی معمولاً این مناطق برفگیر هستند و به علت مشکلات دسترسی، فاقد آمار و یا کم‌آمار هستند.  در این تحقیق تلاش شده تا با استفاده از حداقل آمار و اطلاعات در دسترس، شبیه‌سازی جریان در حوضه برفگیر سردآبرود که حوضه‌ای نسبتاً کوچک و دارای آمار کم می‌باشد به وسیله مدل SRM1 و شبکه‌های عصبی مصنوعی (ANNs)2 به انجام رسد و سپس اثر خطا در برآورد جریان به واسطه اطلاعات کم، بر مقدار برآورد انرژی تولیدی بررسی گردد. در اجرای مدل SRM نیاز به سطح تحت پوشش برف می‌باشد که با استفاده از تصاویر سنجنده AVHRR3 ماهواره NOAA4 برای سال‌های 1999 و 2000 تأمین شد.  برای ANNs مرحله آموزش با 1 (سال 1999 با استفاده از ایستگاه‌های موجود در منطقه) و 3 سال (1997 لغایت 1999 با استفاده از ایستگاه‌های منطقه و ایستگاه‌های مجاور) به طور جداگانه انجام و در هر دو مورد سال 2000 برای صحت‌‌سنجی در نظر گرفته شد. نتایج نشان داد در صورتی که ANNs با آمار روزانه سه سال آموزش داده شود می‌تواند نتایج بهتری از SRM ارائه کند. هرچند هر دو روش در برآورد پرآبی‌ها با مشکلاتی همراه هستند. برای بررسی اثر نتایج بالا در تولید برق، با استفاده از روش‌های تداوم جریان و روندیابی متوالی جریان، میزان انرژی تولیدی برآورد و با هم مقایسه گردید. در این خصوص از نرم‌افزار RETScreen و برنامه‌ای که طی تحقیق توسعه یافت، استفاده گشت.  نتایج این بخش نشان داد که در شرایط مساوی طول دوره آماری (1999 و 2000) مدل SRM به طور مطلوب‌تری شبیه‌سازی جریان و متعاقب آن  تولید انرژی را محاسبه کرده است. ولی در مورد ANNs با سه سال آموزش، نتایج به SRM نزدیک‌تر می‌گردد.  هرچند رواناب شبیه‌سازی شده با SRM تولید برق را بهتر برآورد کرده است که علت آن را باید در شبیه‌سازی بهتر جریان در محدوده مورد استفاده برای توربین‌های نیروگاه یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Runoff Simulation in Snowbound Catchments, Using SRM and ANN Models to Estimate Hydropower Potentials in Data Scarcity Situations

نویسندگان [English]

  • M Dehghani 1
  • S Morid 2
  • A. A Norouzi 3
1 M.Sc., Dept. of water structures, College of Agriculture, University of Tarbiat Modares, Tehran, Iran.
2 Associate Professor, Dept. of Water Structures, College of Agriculture, University of Tarbiat Modares, Tehran, Iran.
3 Research Assistant, Soil Conservation and Watershed Management Research Institute of Iran, Tehran, Iran
چکیده [English]

Small hydropower plants can have an important role in energy generation.  Upper catchments are normally proper locations to construct such plants, but they usually have snowy regimes and the availability of data is usually a problem.  This paper is an attempt to simulate snowmelt-runoff with SRM and ANNs in the relatively small catchment of Sardabrood in northern Iran with scarce data.  In the next step, effects of errors resulting from the streamflow simulation on the estimated hydropower energy potentials is investigated.

For the SRM model, a snow covered area is needed.  This is met by the images of the AVHRR sensor of NOAA satellites for the years 1999 and 2000.  In case of ANNs, the networks are trained with 1 year- (1999 using stations in the region) and 3 year- (1997 to 1999 using stations of the region and nearby) observed data. Year 2000 is used for verification.  The results have shown that if ANNs get trained with 3-year data, it performs better than SRM.  Both methods have problems in high flow simulations.  Duration-Curve method and Sequential Streamflow Routing method are applied to simulate electricity generation, based on the results of runoff simulations. The RETScreen software and a program developed in this research are implemented for this purpose. The comparisons suggested better performance of SRM in the equal time periods (1999 and 2000) and subsequently better energy generation prediction. ANNs with 3 years training have closer results to SRM.  Although runoff simulated with SRM have better performance in energy generation.  This is because of better simulation of runoff in the operational ranges of the turbines

کلیدواژه‌ها [English]

  • Snowmelt Runoff
  • hydropower
  • SRM
  • Artificial Neural Networks
  • Ungauged

پرهمت، ج.، ثقفیان، ب. و صدقی، ح. (1381).  "شبیه­سازی سیلاب حاصل از ذوب برف و باران با استفاده از داده­های سنجش از دور و مدل SRM در زیر حوضه­های کارون"،  ششمین سمینار بین­المللی مهندسی رودخانه.

 جاماب (1370 الف).  "طرح‌ جامع‌ آب‌ کشور: شناخت اقلیمی ایران"،  جلد اول-بررسی­های بنیادی بارندگی.  شرکت مهندسین مشاور جاماب وابسته به وزارت‌ نیرو.

جاماب (1370 ب).  "طرح‌ جامع‌ آب‌ کشور: شناخت اقلیمی ایران"،  جلد دوم-دمای هوا.  شرکت مهندسین مشاور جاماب وابسته به وزارت‌ نیرو.

نجف­زاده، ر. (1383).  "شبیه­سازی جریان رودخانه با مدل ذوب برف (SRM) و استفاده از داده­های سنجش از دور (RS) و سیستم اطلاعات جغرافیایی (GIS)"، پایان­نامه کارشناسی ارشد عمران.  دانشکده عمران، دانشگاه صنعتی شریف.

Baumgartner, M. F., Apfl, G. and Holzer, T. (1994).  "Monitoring alpine snow cover variations using NOAA-AVHRR data", International geosciences and remote sensing symposium (IGARSS), 4: pp. 2087-2089

Chen, Ch., Nijssen, B., Wang, Y., Tsang, L., Hwang, J. and Lettenmaie, D.P. (1998).  "Mapping the spatial distribution and time evaluation of snow water equivalent using neural network iterative approach and a snow hydrology model", Proceedings of the 1998 IEEE international geoscience and remote sensing symposium, IGARSS.  3: pp. 1258-1260.

Clair, Th. A. and  Ehrman, J. M. (1998).  "Using neural network to assess the influence of changing seasonal climates in modifying discharge, dissolved organic carbon, and nitrogen export in eastern Canadian rivers",  Water Resources Research, 34(3): pp. 447-455.

Coulibaly, P., Anctil, F. and Bobee, B. (2000).  "Multivariate reservoir inflow forecasting using temporal neural networks", Journal of Hydrologic Engineering, 5(2): pp. 115-123.

Engset, R. V., Udnaes, H. C., Guneriussen, T. and Koren, H. (2003).  "Improved runoff simulations using satellite-observed time series of snow cover area", Nordic hydrology, 4: pp. 281-294.

Gomez-Landesa, E., Rango, A. and Hall, D. K. (2000).  "Improved snow cover remote sensing for snowmelt runoff forecasting",  International association of hydrological sciences (IAHS), 267: pp. 61-65.

Hall, D. K. and Martinec, J. (1985). "Remote sensing of ice and snow", Chapman and Hall.  1st edition, pp. 47-51.

Hann, C. T. (2002).  "Statistical Methods in Hydrology", Iowa State Press, 2nd edition.

Hargreaves, G. H., and Samani, Z. A. (1982).   "Estimating potential evapotranspiration", Journal of Irrigation and Drainage Engineering, ASCE, 108(3): pp. 25-230.

Holzer, T., Apfl, G. and Baumgartner, M. F. (1995).  "Monitoring Swiss alpine snow cover variations

 

       using NOAA-AVHRR data", International geosciences and remote sensing symposium (IGARSS), 3: pp. 1765-1767.

Malcher, P. and Heidinger, M. (2001).  "Processing and data assimilation scheme for satellite snow cover products in the hydrological model", Envisnow EVG1-CT-2001-00052.

Martinec, J., Rango, A. and Roberts, R. (2005).  "Snowmelt runoff model user's manual",  WinSRM version 1.1 Updated edition.

Morid, S., Gosain, A. K. and Keshari, A. K. (2002).  "Comparison of the SWAT model and ANN for daily simulation of runoff in snowbound ungauged catchments", Proceedings of the fifth international conference on Hydroinformatics, Cardiff, UK.

Rango, A. (1992).  "Worldwide testing of the snowmelt runoff model with applications for predicting the effects of climate change",  Nordic hydrology, 23: pp. 155-172.

Rango, A. and Martinec, J. (1995).  "Revisiting the degree-day method for snowmelt computations",  Water resources bulletin, 31: pp. 657-669.

RETScreen (2004 a).  "Clean energy project analysis: RETScreen engineering and cases textbook.  RETScreen international clean energy decision support center".

RETScreen (2004 b).  "RETScreen software online user manual.  RETScreen international clean energy decision support center".

Rott, H., Baumgartner, M., Fergusen, R., Glendinning, G. and Johansson, B. (1999). "HYDALP, a European project on the use of remote sensing for snowmelt modeling and forecasting",  International geosciences and remote sensing symposium (IGARSS), 3: pp. 1779-1782.

Sajikumar, N. and Thandaveswara, B. S. (1999).  "A non- linear rainfall- runoff model using artificial neural networks",  Journal of Hydrology, 216: pp. 32- 55.

Seidel, K. and Martinec, J. (2002).  "Hydrological application of satellite snow cover mapping in the Swiss alps",  Proceedings of EARSEL-LISSING workshop, Bern, pp. 79-87.

Tokar, A. S. and Johnson, P. A. (1999).  "Rainfall runoff using artificial neural networks", ASCE.  Journal of hydrologic engineering, pp. 232-239.

USACE (1985).  Engineering and design hydropower, EM 1110-2-1701.

Zealand, C. M., Burn, D. and Simonovic, S.P. (1999).  "Short term stream flow forecasting using artificial neural networks",  Journal of hydrology, 214: pp. 32- 48.