نمایش توزیع مکانی فسفر، نیتروژن، مواد جامد محلول و مواد جامد معلق در GIS و بررسی اثر کاربری اراضی بر میزان این آلاینده ها (مطالعه موردی: حوضه آبخیز زاینده رود)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای محیط زیست/ دانشگاه ملایر. ملایر. ایران

2 استادیار/ گروه محیط زیست. دانشکده محیط زیست. دانشگاه ملایر. ملایر. ایران

3 دانشیار/گروه محیط زیست. دانشگاه علوم کشاورزی و منابع طبیعی گرگان. گرگان. ایران

چکیده

مهمترین آلاینده هایی که باعث ایجاد آلودگی آب می شوند، نیتروژن و فسفر موجود در رواناب کشاورزی هستند که به آلودگی غیرنقطه ای موسوم هستند. در این پژوهش از مدل L-THIA برای نمایش توزیع مکانی کل فسفر، کل نیتروژن، نیترات-نیتریت، مواد جامد محلول و مواد جامد معلق و از نرم افزار SPSS جهت بررسی ارتباط آن با کاربری های اراضی در حوضه آبخیز زاینده رود، استفاده شد. جهت بررسی اثر کاربری اراضی آن بر پارامتر های کیفیت آب رودخانه تعداد 5 زیر حوضه که دارای بیشترین تنوع کاربری اراضی بودند انتخاب و با نرم افزار ArcView به کمک برنامه جنبی HEC-GeoHMS، مرز زیرحوضه آبخیز و نسبت کاربری های اراضی مختلف مربوط به هر زیرحوضه تعیین گردید، سپس در هر زیر حوضه یک ایستگاه تعیین شد و میزان آلاینده ها طی یک دوره یکساله از فروردین 94 تا فروردین 95 مورد پایش قرار گرفت. نتایج آماری و ضریب همبستگی پیرسون حاکی از آن است که ارتباط معنی داری بین کاربری کشاورزی با همه آلاینده های مورد بررسی به جز فسفر محلول، بین اراضی مسکونی و بایر و همه آلاینده ها به جز مواد جامد محلول و نیترات-نیتریت و بین اراضی مرتعی و جنگلی و مواد جامد محلول وجود دارد. با بررسی پهنه های تجمع میزان فسفر و نیتروژن در حوضه آبخیز و شناسایی محیط هایی که میزان این مواد بالاست، می توان اقدامات مدیریتی جهت کاهش میزان مصرف نیتروژن و فسفر و در نهایت کاهش میزان آلودگی در حوضه آبخیز به عمل آورد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Relationship of land use with phosphor, nitrogen, dissolved solids and suspended solids and its presentation in GIS (case study: Zayandehrood basin)

نویسندگان [English]

  • M Mirzaei 1
  • E Solgi 2
  • A Salman Mahiny 3
1 PHD student in environmental science, Malayer University
2 corresponding author- Assistant Professor, Department of Environment, Faculty of Natural Resources and Environment, Malayer University
3 Associate Professor, College of Fisheries and Environmental Sciences, Gorgan university of Agriculture Sciences and Natural Resources
چکیده [English]

The most important pollutants that cause water pollution, are the nitrogen and phosphorus in agricultural runoff that are known to the non-point source pollution. In this study, L-THIA model is used to calculate the amount of total phosphorus, total nitrogen, nitrate-nitrite, total soluble solids and suspended solids and SPSS software is used for evaluation its relation to the land use in the Zayanderood river basin. For assessment of land use impact on river water quality is selected 5 sub-basins and is identified boundary of each sub-basin and rate of different land use related to each sub-basin using ArcView and HEC-Geo-HMS extension. Then in each sub-basin, 1 station is selected and phosphorus, total nitrogen, total soluble solids and suspended solids is measured from March 2015 to March 2016. Statistical analysis and Pearson correlation coefficient indicates there is a significant relationship between all pollutants and land uses, except dissolves phosphorus. As well as there is a significant relationship between residential area and bare lands with all pollutants, except dissolved solids and nitrate-nitrite. Also there is a significant relationship between dissolves solids with forest land and grassland. Considering accumulation zones of phosphorus and nitrogen in the watershed and identification of areas where have high levels of these materials, management actions can be used to reduce the amount of nitrogen and phosphorus and ultimately reduce the amount of pollution in the watershed.

کلیدواژه‌ها [English]

  • Pollutants
  • Run off
  • L-THIA model

Alexander RB, Smith RA, Schwarz GE, Boyer EW, Nolan JV, Brakebill JW (2008) Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River Basin. Environment Science Technology Journal, 42(2):822–830.

Bryan BA, Kandulu JM (2010) Designing a policy mix and sequence for mitigating agricultural non-point source pollution in a water supply catchment. Journal of Water Resource Manage, 25(1):875- 890.

Collins R, Mcleod M, Hedley M (2007) Best management practices to mitigate fecal contamination by livestock of New Zealand waters. N Z J Agriculture Resource, 50:255-267.

Darradi Y, Saur E, Laplana R, Lescot JM, Kuentz V, Meyer BC (2012) Optimizing the environmental performance of agricultural activities: A case study in La Boulouze watershed. Ecology Indicators Journal, 22: 27–37

Ficklin DL, Luo YZ, Luedeling E, Gatzke SE, Zhang MH (2010) Sensitivity of agricultural runoff loads to rising levels of CO2 and climate change in the San Joaquin Valley watershed of California. Environment Pollution Journal, 158: 223–234.

Galdavi S, Salman Mahini A, Najafinejad A (2012) Application of long-term hydrologic impact assessment resulting land use changes on water resources. Environment and Development Journal, 3(6): 35-46

Guo W, Fu Y, Ruan B, Ge H, Zhao N (2014) Agricultural non-point source pollution in the Yongding River Basin. Ecological Indicators Journal, 36: 254– 261

Jabari A (2013). Role of land use in river water quality. Journal of Geography and Planning, 17(44): 73-93 (In Persian)

Loague K, Corwin DL (2005) Point and nonpoint source pollution. Encyclopedia of Hydrological Sciences, 2:1427-1439

Luo B, Li JB, Huang GH, Li HL (2006) A simulation-based interval two-stage stochastic model for agricultural nonpoint source pollution control through land retirement. Science of the Total Environment Journal, 361: 38–56

Ma Y (2004) L-THIA: A useful hydrological impact assessment model. Nature and Sciences Journal, 2: 68-73

Naghdi A, Alipour M (2012) Introduction of GIS application for modeling of non-point source pollution resulting agriculture. The second Confrence of Environmental Planning and Management, Tehran University, Iran

Nasr A, Bruen M, Jordan P, Moles R, Kiely G, Byrne P (2007) A comparison of SWAT HSPF and SHETRAN/GOPC for modeling phosphorus export from three catchments in Ireland. Water Resource Journal, 41: 1065–1073

Nikolaidis NP, Heng H, Semagin R, Clausen JC (1998) Non-Linear Response of a Mixed Land Use Watershed to Nitrogen Loading. Elsevier Science BV, Arona, Italy. pp. 251–265

O'Geen AT, Budd R, Gan J, Maynard JJ, Parikh SJ, Dahlgren RA (2010) Mitigating nonpoint source pollution in agriculture with constructed and Restored Wetlands. Advances in Agronomy Journal, 10: 1-76

Ongley ED, Zhang X, Yu T (2010) Current status of agricultural and rural non-point source pollution assessment in China. Environment Pollution Journal, 158: 1159–1168

Pasandidehfar Z, Salman Mahini A, Mirkarimi SH, Akbari M, Gholamalifard M (2014) Non-point pollution modeling using geographic information systems to provide the best management practices in the Gorganroud watershed. Journal of Applied Ecology, 3(2): 43-53. (In Persian)

Por morad M, Ghaderi R (2014) Familiarity with a variety of pollutants in water resources and their effects. First Environment National Conference, Isfahan, Iran (In Persian)

Rabalais NN, Turner RE, Scavia D (2002) Beyond science into policy: Gulf of Mexico hypoxia and the Mississippi River. Bioscience Journal, 52: 129–142

Salman Mahini A, Hossein niya A, Ghasempouri SM, Tavasoli A, Rezaei M (2012) Long term hydrological impact assessment of land use changes on annual run off in watershed scale. Journal of Geography and Development, 10(26):125-134 (In Persian)

Schoch AL, Schilling KE, Chan KS (2009) Time-series modeling of reservoir effects on river nitrate concentrations. Advanced Water Resource Journal, 32:1197–1205

Tang Z, Engel BA, Pijanowski BC and Lim KJ (2005) Forecasting land use change and its environmental impact at a watershed scale. Journal of Environmental Management, 76: 35–45

Tang JL, McDonald S, Peng XH, Samadder SR, Murphy TM, Holden NM (2011) Modeling Cryptosporidium oocytes transport in small ungagged agricultural catchments. Water Resource Journal, 45:3665–3680

Tong STY, Chen W (2002) Modeling the relationship between land use and surface water quality. Environmental Management, 66: 377-393

US Department of Agriculture, Natural Resource Conservation Service (2007) National Soil Survey Handbook, Title 430-VI

Woli KP, Nagumo T, Kuramochi K, Hatano R (2004) Evaluating river water quality through land use analysis and N budget approaches in livestock farming areas. The Science of the Total Environment, 329: 61-74

Wu Y, Liu S (2012) Modeling of land use and reservoir effects on nonpoint source pollution in the Iowa River Basin. Journal of Environment Monitoring, 14: 2350–2361

Zhang X, Liu X, Luo Y, Zhang M (2008) Evaluation of water quality in an agricultural watershed as affected by almond pest management practices. Water Resource Journal, 42:3685–3696