بررسی الگوهای استوکاستیک رواناب در مقیاس‌های زمانی و مکانی مختلف در برخی حوضه‌های آبریز جنوب غرب ایران

نوع مقاله: مقاله پژوهشی

نویسنده

استادیار/ دانشکده منابع طبیعی دانشگاه مازندران، ساری.

چکیده

رواناب مانند بسیاری دیگر از متغیرهای هیدروکلیماتولوژیک از تغییرات فصلی که تحت تأثیر فرایندی تصادفی قرار دارد برخوردار می‌باشد. تحقیقات نشان داده است که مدل‌های استوکاستیک از مناسب‌ترین ابزارهای شبیه‌سازی متغیرهای تصادفی که دارای یک روند فصلی‌اند می‌باشد. در این مقاله ضمن تشریح‌ نحوه توسعه مدل‌های سری‌ زمانی، الگوهای ‌استوکاستیک رواناب به صورت الگوی مرکب اتورگرسیو میانگین متحرک در مقاطع زمانی ماهانه، دوماهه و فصلی در تعدادی از زیر حوضه‌های آبریز دز و کارون در جنوب غرب ایران با مساحت متفاوت از 37 تا 9900 کیلومتر مربع، شناسائی و استخراج شده است. حوضه‌های آبریز مورد تحقیق به نحوی انتخاب گردیده‌اند که دامنه وسیعی از مساحت را در برگرفته تا بتوان الگوهای استوکاستیک رواناب را نسبت به ابعاد مختلف حوضه‌های آبریز مورد بررسی قرار داد. نتایج این تحقیق نشان داده است که نوع الگوی استوکاستیک در مقیاس زمانی دو ماهه و فصلی، وابستگی زیادی با مساحت حوضه‌های آبریز ندارد و در حوضه‌های دیگر نیز قابل تعمیم خواهد بود. از سوی دیگر الگوی مرکب اتورگرسیو میانگین متحرک در مقیاس ماهانه در حوضه‌های آبریز با مساحت مختلف از روند متفاوتی برخوردار بوده و در حوضه‌های آبریز با مساحت بسیار کوچک، احتمال افزایش تعداد مرتبه مدل اتورگرسیو وجود دارد. الگوهای استخراج شده در این تحقیق را می‌توان به منظور پیش بینی رواناب در مقاطع مختلف در حوضه‌های مورد بررسی بکاربرد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Runoff Stochastic Models in Different Spatial and Temporal Scales Case Study: Basins of Southwestern Iran

نویسنده [English]

  • M. R Ghanbarpour
Assistant Professor, Faculty of Natural Resources, University of Mazandaran, Sari.
چکیده [English]

Like many other hydro-climatological data, runoff has seasonal variability incorporated with random processes. Previous research has shown that stochastic models are the most suitable simulation tool for random variables with seasonal variability. In this study, a time series analysis approach was utilized to obtain monthly, bimonthly, and seasonal runoff stochastic models in a few sub-basins in Dez and KarunBasin, in southwestern Iran. These sub-basins vary widely in area (from 37 to 9900 square kilometers) in order to study the models with respect to the different spatial scale. The results have shown that the kind of stochastic model in longer temporal scales is not correlated with the area of the basin. Therefore, this result could be generalized to other similar basins. On the other hand, the Monthly Autoregressive Integrated Moving Average model has different patterns regarding the spatial scale of the basin. It is shown that the autoregressive order of small basins could be greater than one. Extracted stochastic models in this research can be used for runoff forecasting in future studies and research.

کلیدواژه‌ها [English]

  • time series
  • Stochastic
  • Autoregressive
  • runoff

ابریشم چی، ا.، م. تجریشی و ب. چهره نگار (1384)، "مدل‌های استوکاستیک منطقه ای جریان سالانه حوضه‌های آبریز غرب ایران" فصلنامه تحقیقات منابع آب ایران، سال یکم، شماره 1، 57-48.

رحیم زاده، ف. (1372) "تجزیه و تحلیل سری زمانی فشار در ایستگاه تهران – مهرآباد" نیوار، شماره 20-17.

عساکره، ح. و م. خردمندنیا (1381) "مدل سازی SARIMA برای متوسط درجه حرارت ماهانه (مطالعه موردی الگوسازی متوسط درجه حرارت ماهانه جاسک)" نیوار، شماره 44، صفحه 54-41.

نیرومند، ح. (1376) "تحلیل سری‌های زمانی، روشهای یک متغیری و چند متغیری" (ترجمه). انتشارات دانشگاه فردوسی مشهد، شماره 228، ص 586.

Akaike, H. (1974). " A new look at the statistical model identification", IEEE Transactions on Automatic Control, AC-19, pp. 716-723.

Bloomfield, P. and Nychka, D., (1992). "Climate spectra and detecting climate change", Climate change, 21, pp. 275-287.

Box, G.E.P. and Jenkins, G.M., (1976). "Time series analysis: forecasting and control", Holden-Day, San Francisco, CA.

Hipel, K.W. (1993). "Philosophy of model building", J.B. Marco et al. (eds.), Stochastic hydrology and its use in water resources systems simulation and optimization, pp. 25-45.

Hipel, K.W. and McLeod, A.I., (1994). "Time Series Modelling of Water Resources and Environmental Systems", Elsevier, Amsterdam, 1013p.

Zekai, S. (1998). "Small sample estimation of the variance of time averages in climate time series", International Journal of Climatology, Vol. 18, pp. 1725-1732.

Noakes, D.J., McLeod, A.I., and Hipel, K.W., (1985). "Forecasting monthly riverflow time series", International Journal of Forecasting, (1), pp. 179-190.

McLeod, A.I., Hipel, K.W., and Lennox, W.C., (1977). "Advances in Box-Jenkins Modeling", Water Resources Research, Vol. 13, No. 3, pp. 577-586.

Huang, W., Xu, B., and Chan-Hilton, A., (2004). "Forecasting flows in Apalachicola river using neural networks", Hydrologic Engineering, 18, pp. 2545-2564.

Wei, W. (1990). "Time Series Analysis: Univariate and Multivariate Methods", Addison-Wesley, Masach-usetts.