شبیه‌سازی اثرات تغییر اقلیم با استفاده از مدل‌های اقلیمی CMIP5 و CMIP6 بر رواناب با استفاده از مدل هیدرولوژیکی SWAT (مطالعه موردی: حوضه آبریز طشک-بختگان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی منابع آب، دانشگاه بینالمللی امام خمینی، قزوین، ایران.

2 دانشجوی کارشناسی ارشد، گروه مهندسی منابع آب، دانشگاه تربیت مدرس، تهران، ایران.

3 استادیار، گروه مهندسی منابع آب، دانشگاه بینالمللی امام خمینی، قزوین، ایران.

چکیده

تغییر اقلیم به‌صورت مستقیم بر روی مؤلفه‌های هیدرولوژیک و منابع آبی تأثیرگذار است و نقش مهمی در تشدید خطرات احتمالی همچون خشکسالی و سیلاب دارد. لذا بررسی اثرات تغییر اقلیم بر مؤلفه‌های آبی همچون رواناب امری ضروری است. از این رو در این مطالعه، وضعیت رواناب حوضه‌ طشک- بختگان به عنوان یکی از مهم‌ترین حوضه‌های کشور از نظر زیست‌محیطی در شرایط تغییر اقلیم با استفاده از مدل SWAT مورد بررسی قرار گرفت. شبیه‌سازی رواناب با اعمال شرایط تغییر اقلیم برای مدل‌های GFDL-ESM2M و IPSL_CMA5_LR تحت سناریوهای RCP2.6 و RCP8.5 و مدل‌های GFDL-ESM4 و IPSL_CMA6_LR تحت سناریوهای SSP1-2.6 و SSP5-8.5 در دوره‌ آینده‌ نزدیک (2050-2021) انجام شد. نتایج واسنجی و اعتبارسنجی مدل SWAT با استفاده از شاخص‌های R2، NSH و RMSE به ترتیب در بازه‌ (0/99-0/70)، (0/98-0/51) و (14/4-0/9) متر مکعب بر ثانیه قرار دارد که نشان‌دهنده دقت زیاد واسنجی و اعتبارسنجی مدل است. بررسی وضعیت متغیر‌های اقلیمی بارش و دمای حداقل و حداکثر در شرایط تغییر اقلیم، افزایش دما (2/91-1/51 درجه‌ سلسیوس) برای تمامی مدل‌ها و سناریوها و کاهش بارش  (11/15-0/05 درصد) را در اغلب مدل‌ها و سناریو‌ها نشان می‌دهد. شبیه‌سازی مدل هیدرولوژیک SWAT در شرایط تغییر اقلیم در هر 4 ایستگاه تحت سناریوهای SSP کاهش رواناب و در 3 ایستگاه تحت سناریوهای RCP افزایش رواناب را نشان داد. با توجه به اینکه داده‌های اقلیمی سناریوهای SSP به‌تازگی در دسترس قرار گرفته است، نتایج این تحقیق می‌تواند برای ادامه تحقیق در مورد اثرات این سناریوها بر حوضه‌های مهم کشور و در نتیجه سیاست‌گذاری و برنامه‌ریزی منابع آب در شرایط تغییر اقلیم مفید باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulating the Effects of Climate Change on Runoff Using the CMIP5 and CMIP6 Climate Models by SWAT Hydrological Model (Case Study: Tashk-Bakhtegan Basin)

نویسندگان [English]

  • Mohammad Fallah Kalaki 1
  • Vahid Shokri Kuchak 2
  • Hadi Ramezani Etedali 3
1 Ph.D. Student, Water Resources Engineering Department, Imam Khomeini International University, Qazvin, Iran.
2 M.Sc. Student, Water Resources Engineering Department, Tarbiat Modares University, Tehran, Iran.
3 Assistant Professor, Water Resources Engineering Department, Imam Khomeini International University, Qazvin, Iran.
چکیده [English]

Climate change directly affects the hydrological components and water resources and plays an important role in exacerbating potential hazards such as drought and flood. Therefore, it is necessary to study the effects of climate change on hydrological components such as runoff. In this study, the runoff in Tashk-Bakhtegan basin, as one of the most important ecological basins in the country, was investigated in terms of climate change using the SWAT model. Simulation was performed for the near future (2021-2050) by applying climate change conditions in GFDL-ESM2M and IPSL_CMA5_LR models under RCP2.6 and RCP8.5 scenarios and in GFDL-ESM4 and IPSL_CMA6_LR models under SSP1-2.6 and SSP5-8.5 scenarios. The calibration and validation results of the SWAT model using R2, NSH and RMSE indices were in the ranges of (0.70-0.99), (0.51-0.98) and (0.9-14.4 m3/s), respectively which indicated the high accuracy of calibration and validation of the model. Examination of the status of climatic variables of precipitation and minimum and maximum temperature in the conditions of climate change showed an increase in temperature (1.51-2.91 °C) for all models and scenarios and a decrease in precipitation (0.05-11.15 percent) in most models and scenarios. Simulation by SWAT hydrological model in climate change conditions showed runoff decline in all 4 stations under SSP scenarios and runoff rise in 3 stations under RCP scenarios. Given that the climate data of SSP scenarios have recently been made available, the results of this study can be useful to extend the research to the effects of these scenarios on important basins of the country and as a result of policy and planning of water resources under influence climate change.

کلیدواژه‌ها [English]

  • climate change
  • runoff
  • RCP and SSP Scenarios
  • SWAT
  • Tashk-Bakhtegan Basin
Abbasi H, Delavar M, Bigdeli Naalbandan R (2020) Evaluation of the effects of climate change on water resource sustainability in basins using water footprint scarcity indicators. Iran-Water Resources Research 15(4):259-272 (In Persian)
Abbaspour KC, Faramarzi M, Ghasemi SS, Yang H (2009) Assessing the impact of climate change on water resources in Iran. Water Resources Research 45(10)
Alizadeh A, Kamali GA (2007) Crops water requirements. Asstane Ghodse Razavi Press (Beh Nashr), Mashhad
Almazroui M, Saeed F, Saeed S, Islam MN, Ismail M, Klutse NAB, Siddiqui MH (2020) Projected change in temperature and precipitation over Africa from CMIP6. Earth Systems and Environment 4(3):455–475
Arnold J G, Fohrer N (2005) SWAT2000: Current capabilities and research opportunities in applied watershed modelling. Hydrological Processes: An International Journal 19(3):563-572
Arnold J G, Srinivasan R, Muttiah R S, Williams J R (1998) large area hydrologic modeling and assessment part I: model development 1. Journal of the American Water Resources Association, JAWRA 34(1):73-89
Aryal A, Shrestha S, Babel MS (2019) Quantifying the sources of uncertainty in an ensemble of hydrological climate-impact projections. Theoretical and Applied Climatology 135(1/2):193–209
Chen HP, Sun JQ (2015) Assessing model performance of climate extremes in China: An intercomparison between CMIP5 and CMIP3. Climatic Change 129(1-2):197–211
Delavar M, Morid S (2017) Simulation of water resources and agricultural systems of TashkBakhtegan Basin. Technical Report, Ministry of Energy
Delavar M, Morid S, Morid R, Farokhnia A, Babaeian F, Srinivasan R, Karimi P (2020) Basin-wide water accounting based on modified SWAT model and WA+ framework for better policy making. Journal of Hydrology 585:124762‏
Doulabian S, Golian S, Toosi A S, Murphy C (2021) Evaluating the effects of climate change on precipitation and temperature for Iran using RCP scenarios. Journal of Water and Climate Change 12(1):166-184‏
Eyring V, Bony S, Meehl GA, et al. (2016) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development 9:1937–58
Goodarzi M, Vagheei H, Mousavi M (2020) The behavior of inflow to the Seimareh Dam in the face of climate change impacts. International Journal of Environmental Science and Technology 22(3):170-182 (In Persian)
Hempel S, Frieler K, Warszawski L, Schewe J, Piontek F (2013) A trend-preserving bias correction–the ISI-MIP approach. Earth System Dynamics 4(2):219-236‏
Houshmand Kouchi D, Esmaili K, Faridhosseini A, Sanaei Nejad SH, Khalili D (2019) Simulation of climate change impacts using fifth assessment report models under RCP scenarios on water resources in the upper basin of Salman Farsi Dam. Iranian Journal of Irrigation and Drainage 2(13):243-258 (In Persian)
Jones P, Hulme M (1996) Calculating regional climatic time series for temperature and precipitation: methods and illustrations. International Journal of Climatology 16(4):361-377
Kim H J, Cho K, Kim Y, Park H, Lee J W, Kim S J, Chae Y (2020) Spatial assessment of water-use vulnerability under future climate and socioeconomic scenarios within a River Basin. Journal of Water Resources Planning and Management 146(7):05020011
Kim J H, Sung J H, Chung E S, Kim S U, Son M, Shiru M S (2021) Comparison of projection in meteorological and hydrological droughts in the Cheongmicheon Watershed for RCP4. 5 and SSP2-4.5. Sustainability 13(4):2066‏
Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themeßl M, et al. (2010) Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Reviews of Geophysics 48(3):3003
MOE (Ministry of Energy) (2017) Climate change adaptation strategies and national plans in water sector, simulating water resources and agricultural systems in Tashk-Bakhtegan basin. (In Persian)
O’Neill BC, Tebaldi C, van Vuuren DP, et al. (2016) The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geoscientific Model Development 9:3461–82
Prathumratana L, Sthiannopkao S, Kim KW (2008) The relationship of climatic and hydrological parameters to surface water quality in the lower Mekong River. Environment International 34(6):860-866‏
Rabezanahary Tanteliniaina M F, Rahaman M, Zhai J (2021) Assessment of the future impact of climate change on the hydrology of the Mangoky River, Madagascar using ANN and SWAT. Water 13(9):1239‏
Sachindra DA, Ahmed K, Rashid M, Shahid S, Perera BJC (2018) Statistical downscaling of precipitation using machine learning techniques. Atmospheric Research 212:240–258
Singh A, Gosain A K (2013) GIS based hydrological modelling for climate change impact assessment greener. Journal of Science, Engineering and Technology 3(7):210-219
Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society 93(4):485–498
Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: An overview. Climatic Change 109(1):5-31
Vetter T, Reinhardt J, Flörke M, Van Griensven A, Hattermann F, Huang S, Krysanova V (2017) Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins. Climatic Change 141(3):419-433‏
Wang J, Hu L, Li D, Ren M (2020) Potential impacts of projected climate change under CMIP5 RCP scenarios on streamflow in the Wabash River Basin. Advances in Meteorology 2020:9698423
Warszawski L, Frieler K, Huber V, Piontek F, Serdeczny O, Schew J (2014) The inter-sectoral impact model intercomparison project (ISI–MIP): project framework. Proceedings of the National Academy of Sciences 111(9):3228-3232‏
Wen S, Su B, Wang Y, Zhai J, Sun H, Chen Z, Jiang T (2020) Comprehensive evaluation of hydrological models for climate change impact assessment in the Upper Yangtze River Basin, China. Climatic Change 163(3):1207-1226‏
Wilby R, Wigley T (1997) Downscaling general circulation model output: A review of methods and limitations. Progress in Physical Geography: Earth and Environment 21(4):530–548
Wurbs RA (1998) Dissemination of generalized water resources models in the United States. Water International 23(3):190-198