امکان‌سنجی توسعه مدل بیلان آبی مبتنی بر اطلاعات بزرگ مقیاس دورسنجی تبخیر- تعرق

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه زنجان دانشجوی دکتری مهندسی آب و سازه های هیدرولیکی، دانشکده مهندسی عمران، دانشگاه زنجان.

2 استادیار، دانشکده مهندسی عمران، دانشگاه زنجان.

3 استادیار، دانشکده مهندسی عمران، دانشگاه تهران.

چکیده

در چرخه هیدرولوژی یکی از مهمترین اجزاء تبخیر و تعرق واقعی است که شار رطوبتی به سمت خارج ایجاد نموده و بخشی از منابع رطوبتی را از سیستم خارج می‌نماید. عمده روابط موجود در تخمین مقدار تبخیر و تعرق واقعی، بصورت تجربی بوده و مبتنی بر مشخصات اقلیمی و محلی است که کالیبره نمودن آنها و یا انتخاب نوع رابطه متناسب با مناطق مورد بررسی در آنها الزامی است. هدف اصلی مقاله حاضر، بررسی اثر استفاده از محصولات بزرگ مقیاس تبخیر و تعرق در عملکرد مدل‌ بیلان آب در منطقه‌ای برف‌گیر و کوهستانی در غرب ایران (محدوده مطالعاتی سد قشلاق) است. به همین منظور سه محصول بزرگ مقیاس GLEAM، SSEbop و MODIS در قالب چهار سناریو (سه سناریو استفاده از این محصولات در کنار مدل مرجع بیلان منابع آب) ارزیابی شده است. در انتها با توجه به لزوم ارزیابی اثر متقابل استفاده از این اطلاعات بر ساختار مدل بیلان، ارزیابی عدم قطعیت پارامترهای مدل با روش GLUE انجام شده است. نتایج کالیبراسیون همزمان تبخیر و تعرق و جریان رودخانه، بر بهبود رفتار مدل با استفاده از محصولات ماهواره‌ایSSEbop  و GLEAM صحه می‌گذارد. در تمام سناریوهای مطرح شده محصول GLEAM بهترین عملکرد را داشته و شبیه‌سازی جریان رودخانه را بهبود داده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Feasibility Study of Developing a Water Balance Model Using Global Gridded Evapotranspiration Products

نویسندگان [English]

  • S-Rahimeh Mousavi 1
  • Saeed Abbasi 2
  • Mohsen Nasseri 3
1 Ph.D. Student, School of Civil Engineering, University of Zanjan, Zanjan, Iran.
2 Assistant Professor, School of Civil Engineering, University of Zanjan, Zanjan, Iran.
3 Assistant Professor, School of Civil Engineering, University of Tehran, Tehran, Iran.
چکیده [English]

Evapotranspiration is one of the most important part of hydrologic cycle that sinks the watershed moisture as an outward flux from the existing water resource. Most of the current relationships equation for estimating actual evapotranspiration are empirical, which are based on local condition that their calibration or selection must be based on status of region of interest. The main goal of the current research is the evaluation of the effect of using global gridded evapotranspiration products on the performance of water balance model in Snow-covered region in a mountainous watershed located in western Iran; Gheshlagh watershed. To do this, three global gridded products including GLEAM, SSEbop and MODIS organized in four calibration scenarios (three scenarios using these products and reference model) are evaluated. Finally, due to the need for evaluating the interaction of using these data on structure of water balance models, the uncertainty of the model parameters has been evaluated by GLUE method. Simultaneous calibration results of evapotranspiration and runoff showed that model operation is better once using GLEAM and SSEbop products. In all scenarios, GLEAM had best function that improved runoff simulation.
 

کلیدواژه‌ها [English]

  • monthly water balance model
  • Global Gridded Evapotranspiration
  • Uncertainty
Ahmadi A and Nasseri M (2020) Do direct and inverse uncertainty assessment methods present the same results?. Journal of Hydroinformatics 22(4):842-855
Ahmadi A, Nasseri M, and Solomatine D P (2019) Parametric uncertainty assessment of hydrological models: Coupling UNEEC-P and a fuzzy general regression neural network. Hydrological Sciences Journal 64(9):1080-1094
Allen R G, Tasumi M, Morse A, Trezza R, Wright J L, Bastiaanssen W, Kramber W, Lorite I, and Robison C W (2007) Satellite-based energy balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Applications. Journal of Irrigation and Drainage Engineering 133(4):395-406
Amini Y and Nasseri M (2021) Improving spatial estimation of hydrologic attributes via optimized moving search strategies. Arabian Journal of Geosciences 14(8):1-17
Bastiaanssen W G, Menenti M, Feddes R, and Holtslag A (1998) A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of Hydrology 212:198-212
Becker R, Koppa A, Schulz S, Usman M, aus der Beek T and Schüth C (2019) Spatially distributed model calibration of a highly managed hydrological system using remote sensing-derived ET data. Journal of Hydrology 577:123944
Beven  K  and  Binley A (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrological processes 6(3): 279-298
Che T, LI X, and GAO F (2004) Estimation of snow water equivalent in the Tibetan Plateau using passive microwave remote sensing data (SSM/I). Journal of Glaciology and Geocryology 3(3):19-368
Chen M, Senay G B, Singh R K, and Verdin J P (2016) Uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model at multiple flux tower sites. Journal of Hydrology 536:384-399
De Vos N, Rientjes T, and Gupta H (2010) Diagnostic evaluation of conceptual rainfall-runoff models using temporal clustering. Hydrological Processes 24(20):2840-2850
Dorigo W, Gruber A, De Jeu R, Wagner W, Stacke T, Loew A, Albergel C, Brocca L, Chung D, and Parinussa R (2015) Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sensing of Environment 162:380-395
Girotto M, Reichle R, Rodell M, and Maggioni V (2021) Data assimilation of terrestrial water storage observations to estimate precipitation fluxes: A synthetic experiment. Remote Sensing 13(6):1223
Guo S, Chen H, Zhang H, Xiong L, Liu P, Pang B, Wang G, and Wang Y (2005) A semi-distributed monthly water balance model and its application in a climate change impact study in the middle and lower Yellow River basin. Water International 30(2):250-260
Gupta H V, Kling H, Yilmaz K K, and Martinez G F (2009) Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology 377(1-2): 80-91
Ha L T, Bastiaanssen W G, Van Griensven A, Van Dijk A I, and Senay G B (2018) Calibration of spatially distributed hydrological processes and model parameters in SWAT using remote sensing data and an auto-calibration procedure: A case study in a Vietnamese river basin. Water 10(2):212
Herman M R, Nejadhashemi A P, Abouali M, Hernandez-Suarez J S, Daneshvar F, Zhang Z, Anderson M C, Sadeghi A M, Hain C R, and Sharifi A.(2018) Evaluating the role of evapotranspiration remote sensing data in improving hydrological modeling predictability. Journal of Hydrology 556:39-49
Huffman G J, Bolvin D T, Nelkin E J, Wolff  D B, Adler R F, Gu G, Hong Y, Bowman K P, and Stocker E F (2007) The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology 8(1):38-55
Immerzeel W and Droogers P (2008) Calibration of a distributed hydrological model based on satellite evapotranspiration. Journal of Hydrology 349(3-4):411-424
Jazim A A (2006) A monthly six-parameter water balance model and its application at arid and semiarid low yielding catchments. Journal of King Saud University-Engineering Sciences 19(1):65-81
Jiang L and Islam S (2001) Estimation of surface evaporation map over southern Great Plains using remote sensing data. Water Resources Research 37(2):329-340
Jiang L, Wu H, Tao J, Kimball J S, Alfieri L, and Chen X (2020) Satellite-Based Evapotranspiration in Hydrological Model Calibration. Remote Sensing 12(3):428
Jin X, Xu C Y, Zhang Q, and Singh V (2010) Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model. Journal of Hydrology 383(3-4):147-155
Karpouzos D, Baltas E, Kavalieratou S, and Babajimopoulos C (2011) A hydrological investigation using a lumped water balance model: The Aison River Basin case (Greece). Water and Environment Journal 25(3):297-307
Khan M S, Liaqat U W, Baik J, and Choi M (2018) Stand-alone uncertainty characterization of GLEAM, GLDAS and MOD16 evapotranspiration products using an extended triple collocation approach. Agricultural and Forest Meteorology 252:256-268
Knoben W J, Freer J E, and Woods R A (2019) Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrology and Earth System Sciences 23(10):4323-4331
Kunnath-Poovakka A, Ryu D, Renzullo L, and George B (2016) The efficacy of calibrating hydrologic model using remotely sensed evapotranspiration and soil moisture for streamflow prediction. Journal of Hydrology 535:509-524
Lancaster P and Salkauskas K (1981) Surfaces generated by moving least squares methods. Mathematics of Computation 37(155):141-158
Li L, Xia J, Xu C Y, and Singh V (2010) Evaluation of the subjective factors of the GLUE method and comparison with the formal Bayesian method in uncertainty assessment of hydrological models. Journal of Hydrology 390(3-4):210-221
Liu W, Wang L, Zhou J, Li Y, Sun F, Fu G, Li X, and Sang Y F (2016) A worldwide evaluation of basin-scale evapotranspiration estimates against the water balance method. Journal of Hydrology 538:82-95
Long D, Longuevergne L, and Scanlon B R (2014) Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resources Research 50(2):1131-1151
Lopez P L, Sutanudjaja E H, Schellekens J, Sterk G, and Bierkens M F (2017) Calibration of a large-scale hydrological model using satellite-based soil moisture and evapotranspiration products. Hydrology and Earth System Sciences 21(6):3125-3144
McCabe G J and Markstrom S L (2007) A monthly water-balance model driven by a graphical user interface, US Geological Survey Reston, VA, Open-File Report 2007–1088
Moreira A A, Ruhoff A L, Roberti D R, de Arruda Souza V, da Rocha H R, and de Paiva R C D (2019) Assessment of terrestrial water balance using remote sensing data in South America. Journal of Hydrology 575:131-147
Moriasi D N, Arnold J G, Van Liew M W, Bingner R L, Harmel R D, and Veith T L (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50(3):885-900
Moriasi D N, Gitau M W, Pai N, and Daggupati P (2015) Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of the ASABE 58(6):1763-1785
Muthuwatta L P, Booij M J, Rientjes T H, Bos M, Gieske A, and Ahmad M u D (2009) Calibration of a semi-distributed hydrological model using discharge and remote sensing data. IAHS Publication 333:52
Nash J E and Sutcliffe J V (1970) River flow forecasting through conceptual models part I-A discussion of principles. Journal of Hydrology 10(3):282-290
Nasseri M, Ansari A, and Zahraie B (2014) Uncertainty assessment of hydrological models with fuzzy extension principle: Evaluation of a new arithmetic operator. Water Resources Research 50(2):1095-1111
Odusanya A E, Mehdi B, Schürz C, Oke A O, Awokola O S, Awomeso J A, Adejuwon J O, and Schulz K (2019) Multi-site calibration and validation of SWAT with satellite-based evapotranspiration in a data-sparse catchment in southwestern Nigeria. Hydrology & Earth System Sciences 23(2):1113-1144
Pan S, Liu L, Bai Z and Xu Y P (2018) Integration of remote sensing evapotranspiration into multi-objective calibration of Distributed Hydrology–Soil–Vegetation Model (DHSVM) in a humid region of China. Water 10(12):1841
Parajka J and Blöschl G (2008) The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models. Journal of Hydrology 358(3-4):240-258
Poméon T, Diekkrüger B, Springer A, Kusche J, and Eicker A (2018) Multi-objective validation of SWAT for sparsely-gauged west African River Basins-A remote sensing approach. Water 10(4):451
Qin C, Jia Y, Su Z, Zhou Z, Qiu Y, and Suhui S (2008) Integrating remote sensing information into a distributed hydrological model for improving water budget predictions in large-scale basins through data assimilation. Sensors 8(7):4441-4465
Rabuffetti D, Ravazzani G, Corbari C, and Mancini M (2008) Verification of operational Quantitative Discharge Forecast (QDF) for a regional warning system? The AMPHORE case studies in the upper Po River. Natural Hazards and Earth System Sciences, Copernicus Publ., European Geosciences Union 8(1):161-173
Ragab R, Kaelin A, Afzal M, and Panagea I (2020) Application of Generalized Likelihood Uncertainty Estimation (GLUE) at different temporal scales to reduce the uncertainty level in modelled river flows. Hydrological Sciences Journal 65(11):1856-1871
Rajib A, Evenson G R, Golden H E, and Lane C R (2018) Hydrologic model predictability improves with spatially explicit calibration using remotely sensed evapotranspiration and biophysical parameters. Journal of Hydrology 567:668-683
Rao A R and Al-Wagdany A (1995) Effects of climatic change in Wabash river basin. Journal of Irrigation and Drainage Engineering 121(2):207-215
Rientjes T, Muthuwatta L P, Bos M, Booij M J, and Bhatti H (2013) Multi-variable calibration of a semi-distributed hydrological model using streamflow data and satellite-based evapotranspiration. Journal of Hydrology 505:276-290
Rizzo M L and Székely G J (2016) Energy distance. Wiley Interdisciplinary Reviews: Computational Statistics 8(1):27-38
Roy T, Gupta H V, Serrat-Capdevila A, and J B Valdes (2017) Using satellite-based evapotranspiration estimates to improve the structure of a simple conceptual rainfall–runoff model. Hydrology and Earth System Science 21(2):879–896
Schoups G and Nasseri M (2020) GRACEfully closing the water balance: A data‐driven probabilistic approach applied to river basins in Iran. Water Resources Research 57(6):e2020WR029071
Shahrban M (2017) On the importance of soil moisture for streamflow forecasting. Ph.D. Thesis, Monash University
Tobin K J and Bennett M E (2017) Constraining SWAT calibration with remotely sensed evapotranspiration data. JAWRA Journal of the American Water Resources Association 53(3):593-604
Troy T J, Wood E F, and Sheffield J (2008) An efficient calibration method for continental‐scale land surface modeling. Water Resources Research 44(9)
Velpuri N, Senay G, and Asante K (2012) A multi-source satellite data approach for modelling Lake Turkana water level: Calibration and validation using satellite altimetry data. Hydrology and Earth System Sciences 16(1):1-18
Vervoort R W, Miechels S F, van Ogtrop F F, and Guillaume J H (2014) Remotely sensed evapotranspiration to calibrate a lumped conceptual model: Pitfalls and opportunities. Journal of hydrology 519:3223-3236
Vogel R M and Sankarasubramanian A (2003) Validation of a watershed model without calibration. Water Resources Research 39(10)
Wang G, Zhang J, Jin J, Liu Y, He R, Bao Z, Liu C, and Li Y (2014) Regional calibration of a water balance model for estimating stream flow in ungauged areas of the Yellow River Basin. Quaternary International 336:65-72
Wang G, Zhang J, Xuan Y, Liu J, Jin J, Bao Z, He R, Liu C, Liu Y, and Yan X (2013) Simulating the impact of climate change on runoff in a typical river catchment of the Loess Plateau, China. Journal of Hydrometeorology 14(5):1553-1561
Wang Q, Pagano T, Zhou S, Hapuarachchi H, Zhang L, and Robertson D (2011) Monthly versus daily water balance models in simulating monthly runoff. Journal of Hydrology 404(3-4):166-175
Widén-Nilsson E, Halldin S, and Xu C y (2007) Global water-balance modelling with WASMOD-M: Parameter estimation and regionalisation. Journal of Hydrology 340(1-2):105-118
Winsemius H, Savenije H, and Bastiaanssen W (2008) Constraining model parameters on remotely sensed evaporation: justification for distribution in ungauged basins? Hydrology & Earth System Sciences 12(6):1403-1413
Zhang Y, Chiew F H, Zhang L, and Li H (2009) Use of remotely sensed actual evapotranspiration to improve rainfall–runoff modeling in Southeast Australia. Journal of Hydrometeorology 10(4):969-980