ارزیابی تاب آوری هیدرولیکی و زمان بازگشت شبکه توزیع آب شهر صدرا در برابر زلزله

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری عمران- آب، دانشکده مهندسی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران.

2 استادیار، گروه مهندسی عمران، واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، ایران.

3 استاد بخش عمران و محیط زیست و رئیس مرکز تحقیق و توسعه پایدار دانشگاه شیراز، شیراز، ایران.

4 استادیار، دانشکده مهندسی عمران، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران.

چکیده

ارزیابی تاب‎آوری سیستم توزیع آب شهری در برابر بلایای طبیعی و حوادث پیش‎بینی نشده در مدیریت شهری اهمیت بسزایی دارد. در این مقاله میزان تاب‎آوری هیدرولیکی شبکه آب شهر صدرا در برابر زلزله مورد مطالعه قرار گرفته است. همچنین استراتژی‎های مختلفی برای تعمیر شبکه  توزیع آب تعریف شده است. در این مقاله ابتدا شبکه آب شهر صدرا در EPANET شبیه‎سازی شده و سپس به عنوان ورودی در کدWNTR  وارد می‎شود. WNTR بر اساس تئوری شبکه‎های پیچیده توسعه‎یافته و شاخص دسترسی شهروندان به خدمات آب را محاسبه می‎نماید. در این مقاله 18 سناریو با تغییر در شدت زلزله (5/5، 6 و 7 ریشتر)، مرکز زلزله (شمال، مرکز و جنوب) و دو استراتژی تعمیر با کاهش در میزان تقاضای موردانتظار مصرف‎کننده (25 و 40 درصد کاهش)، مورد بررسی قرار گرفت. برای بررسی معیارهای شکست در شبکه توزیع آب در این مقاله از شاخص Todini استفاده شده است. نتایج نشان می‎دهد در حالی‌که افزایش شدت زلزله در تمامی نواحی رابطه همبستگی مثبت با آسیب‎پذیری شبکه آبرسانی دارد، زمان بازگشت شبکه به شرایط نرمال به استراتژی تعمیر و تغییر در تقاضای مورد انتظار مصرف‎کننده وابسته است. ضمناً آنالیز فراکتال شبکه آبرسانی به منظور تحلیل میزان افزونگی شبکه بر اساس محاسبه بعد فراکتال به منظور یافتن آسیب‎پذیرترین ناحیه شبکه انجام شده است. بررسی نتایج شاخص‎های هیدرولیکی تاب‎آوری و آنالیز فراکتال همگی نشان می‎دهد که شمال به عنوان آسیب‎پذیرترین ناحیه است و میزان تاب‎آوری شبکه در جنوب بیشترین است. در نهایت زمان بازگشت سیستم به حالت نرمال در هر سناریو و تعداد، شماره و محل لوله‎های آسیب دیده در هر سناریو تعیین شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of Hydraulic Resilience and Return Time of Sadra City Water Distribution Network under Earthquake

نویسندگان [English]

  • Alireza Nariman 1
  • Mohammad Hadi Fattahi 2
  • Naser Talebbeydokhti 3
  • Mohammad Sadegh Sadeghian 4
1 Ph.D. Candidate, Civil Engineering Department, Tehran Central Branch, Islamic Azad University, Tehran, Iran.
2 Assistant Professor, Civil Engineering Department, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran.
3 Professor, Civil and Environmental Engineering, School of Engineering, Head of Environmental Research and Sustainable Development Center of Shiraz University, Shiraz, Iran.
4 Assistant Professor, Civil Engineering Department, Tehran Central Branch, Islamic Azad University, Tehran, Iran.
چکیده [English]

Assessing the resilience of the urban water distribution system against natural disasters and unforeseen events is very important in urban management. In this paper, the amount of hydraulic resilience of Sadra water network against earthquake has been studied. Various strategies have also been defined for repairing the water distribution network. In this paper, Sadra city water network is first simulated in EPANET and then imported as input into WNTR (Water Network Tool for Resilience) code, which is programmed in Python. WNTR is developed based on the theory of complex networks and calculates the index of citizens' access to water services. In this paper, 18 scenarios were examined considering changes in earthquake intensity, earthquake center and two repair strategies with a decrease in the amount of consumer demand. Pipes are divided into two categories, general and minor damage, based on the probability of failure. Todini index is used to evaluate the failure criteria in the water distribution network. Results showed that while the increase in earthquake intensity in all areas is positively correlated with the paternal damage of the water supply network, the return time of the network to normal conditions depends on the repair strategy and change in the expected consumer demand. Meanwhile, the fractal analysis of the water supply network has been performed in order to analyze the redundancy of the network based on the fractal dimension in order to find the most vulnerable area of ​​the network. Assessing the hydraulic resilience indices and fractal analysis depicted that the North is the most vulnerable area and South has the highest network resilience. Finally, the return time of the system to normal condition in each scenario and the number, ID and location of damaged pipes in each scenario was determined.

کلیدواژه‌ها [English]

  • Repair strategy
  • damage status
  • WNTR
  • water service availability
Bałut A, Brodziak R, Bylka J, Zakrzewski P (2019) Ranking approach to scheduling repairs of a water distribution system for the post-disaster response and restoration service. Water 11(8):1591
Bellingeri M, Cassi D, Vincenzi S (2014) Efficiency of attack strategies on complex model and real-world networks. Physica A: Statistical Mechanics and its Applications 414:174-80
 Bruneau M, Chang SE, Eguchi RT, Lee GC, O’Rourke TD, Reinhorn AM, Shinozuka M, Tierney K, Wallace WA, Von Winterfeldt D (2003) A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra 19(4):733-52
Chang SE, Shinozuka M (2004) Measuring improvements in the disaster resilience of communities. Earthquake Spectra 20(3):739-55
Chang YH, Kim JH, Jung KS (2012) A Study on the design and evaluation of connection pipes for stable water supply. Journal of Korean Society of Water and Wastewater 26(2):249-56
Choi J, Kang D (2020) Improved hydraulic simulation of valve layout effects on post-earthquake restoration of a water distribution network. Sustainability 12(8):3492
Cimellaro GP, Tinebra A, Renschler C, Fragiadakis M (2016) New resilience index for urban water distribution networks. Journal of Structural Engineering 142(8):C4015014
Di Nardo A, Di Natale M, Giudicianni C, Greco R and Santonastaso GF (2017) Complex network and fractal theory for the assessment of water distribution network resilience to pipe failures. Water Science & Technology: Water Supply 18 (3):767–777
Diao K (2021) Multiscale resilience in water distribution and drainage systems. Water 12(6):1521
Diao K (2021) Towards resilient water supply in centralized control and decentralized execution mode. Journal of Water Supply: Research and Technology-Aqua 70(4):449-66
Farahmandfar Z, Piratla KR, Andrus RD (2017) Resilience evaluation of water supply networks against seismic hazards. Journal of Pipeline Systems Engineering and Practice 8(1):04016014
Holling CS (1973) Resilience and stability of ecological systems. Annual Review of Ecology and Systematics 4(1):1-23
Hunter JD (2007) Matplotlib: A 2D graphics environment. IEEE Annals of the History of Computing 9(03):90-5
Klein R J T, Nicholls R J, Thomalla F (2003) Resilience to natural hazards: How useful is this concept? Environmental Hazards 5(1–2):35–45
Klise KA, Bynum M, Moriarty D, Murray R (2017) A software framework for assessing the resilience of drinking water systems to disasters with an example earthquake case study. Environmental Modelling & Software 95:420-431
Klise KA, Murray R, Walker LT (2015) System’s measures of water distribution system resilience. Sandia National Lab.(SNL-NM), Albuquerque, NM (United States)
 Liu W, Song Z, Ouyang M, Li J (2020) Recovery-based seismic resilience enhancement strategies of water distribution networks. Reliability Engineering & System Safety 203:107088
Liu W, Song Z (2020) Review of studies on the resilience of urban critical infrastructure networks. Reliability Engineering & System Safety 193:106617
Mandelbrot B (1967) How long is the coast of Britain? Statistical self-similarity and fractional dimension. Journal of Science 156:636-638
 Mani A, Tabesh M, Zolfaghari MR (2013) Hydraulic performance of post-earthquake water distribution networks based on head driven simulation method. Water Science and Technology: Water Supply 13(5):1281-8
O'Rourke TD, Jeon SS (1999) Factors affecting the earthquake damage of water distribution systems. InOptimizing Post-Earthquake Lifeline System Reliability, ASCE, 379-388
O’rourke TD, Jeon SS (1994) Seismic zonation for lifelines and utilities. InInvited Keynote Paper on Lifelines. Proceedings sixth international conference on seismic zonation, Palm Springs, EERI CD ROM 2000 Nov
Sagan, H. Space-filling Curves. Springer-Verlag, Berlin
Shi P, O'Rourke TD (2008) Seismic response modeling of water supply systems. Multidisciplinary Center for Earthquake Engineering Research
Todini E (2000) Looped water distribution networks design using a resilience index based heuristic approach. Urban water 2(2):115-22
Taoan Huang and Bistra Dilkina (2020) Enhancing seismic resilience of water pipe networks. In ACM SIGCAS Conference on Computing and Sustainable Societies (COMPASS) (COMPASS ’20), June 15–17, Ecuador. ACM, New York, NY, USA, 9 pages
Toprak S (1998) Earthquake effects on buried lifeline systems. Ph.D. Thesis, Cornell University
Zare N, Talebbeydokhti N (2018) Policies and governance impact maps of floods on metropolitan Shiraz (the first step toward resilience modeling of the city). International Journal of Disaster Risk Reduction 28(2018):298–317
Zhan X, Meng F, Liu S, Fu G (2020) Comparing performance indicators for assessing and building resilient water distribution systems. Journal of Water Resources Planning and Management 146(12):06020012
Zhao X, Chen Z, Gong H (2015) Effects comparison of different resilience enhancing strategies for municipal water distribution network: A multidimensional approach. Mathematical Problems in Engineering 2015:438063