ایجاد خودکار نواحی اندازه‌گیری مجزا در شبکه‌های توزیع آب شهری با استفاده از الگوریتم ساختار جامعه و الگوریتم ژنتیک با هدف توزیع عادلانه فشار شبکه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد مهندسی عمران- آب و سازه‌های هیدرولیکی، دانشگاه یزد.

2 شرکت سهامی آب منطقه‌ای یزد، دکتری عمران- آب دانشگاه صنعتی خواجه نصیر الدین طوسی.

3 استادیار دانشکده مهندسی عمران، دانشگاه یزد.

چکیده

ناحیه اندازه‌گیری مجزا (DMA) یک منطقه مشخص شده است که امکان اندازه‌گیری میزان آب ورودی و خروجی آن منطقه در هر لحظه از زمان مهیا است. روند کلی تشکیل نواحی اندازه‌گیری مجزا عموماً به مرحله خوشه‌بندی برای تشخیص خودکار بهترین جوامع و مرحله ناحیه‌بندی فیزیکی برای بهینه‌سازی محل قرارگیری شیرهای دروازه‌ای و فلومترها در لوله‌های مرزی با توجه به تابع هدف صورت می‌گیرد. در این تحقیق ابتدا شبکه شهر تفت در استان یزد در نرم‎افزار EPANET مدل شد و با اتصال EPANET به نرم‌افزار MATLAB و بارگذاری مشخصات شبکه، با استفاده از الگوریتم ساختار جامعه، شبکه به صورت خودکار خوشه‌بندی شد. در مرحله ناحیه‌بندی فیزیکی با استفاده از الگوریتم ژنتیک محل‌های بهینه قرارگیری شیرهای دروازه‌ای و فلومترها با هدف کاهش واریانس میانگین فشار نواحی اندازه‌گیری مجزا مشخص شد. نتایج نشان داد که الگوریتم تشخیص ساختار جامعه با وزن میانگین فشار روزانه به خوبی توانایی ایجاد خودکار خوشه‌بندی مناسب با توجه به شاخص پیمانگی و فشار یکنواخت داخل خوشه‌ها را دارد و بهینه‌سازی لوله‌های مرزی منجر به کاهش فشار بخش‌های مختلف شبکه از جمله نواحی با فشار بالاتر از میانگین کل شبکه شد و با کاهش واریانس میانگین فشار نواحی اندازه‌گیری مجزا، باعث توزیع عادلانه فشار شبکه شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Automatic Creation of District Metered Areas in Urban Water Distribution Networks Using Community Structure Algorithm and Genetic Algorithm aiming at Equitable Distribution of Network Pressure

نویسندگان [English]

  • Alireza Sadeghi 1
  • Mohammad Mehdi Javadianzadeh 2
  • Hadi Pourdara 3
1 M.Sc. Graduate of Civil Engineering-Water and Hydraulic Structure Engineering, Yazd University.
2 Yazd Regional Water Authority, Ph.D. of Civil Engineering, K.N.Toosi University of Technology.
3 Assistant Professor, Department of Civil Engineering, Yazd University.
چکیده [English]

A District Metered Area (DMA) is a specified area in which inlet and outlet water at any time is measured. The procedure of forming District Metered Areas is generally comprised of two phases: The clustering phase for automatic detection of the best communities and the physical partitioning phase to optimize the location of gate valves and flowmeters according to the objective function. In this study, the network of Taft city in Yazd province was modeled in Epanet software and by linking EPANET and MATLAB and loading the network configurations, the network was automatically clustered using community structure. In the physical partitioning phase, using the genetic algorithm, the optimal locations of the gate valves and flowmeters was determined by considering the objective function of reduction of standard deviation of DMAs average pressure. The results showed that the community structure algorithm with average daily pressure weight can automatically create appropriate clustering according to the modularity index and uniform pressure in clusters. The optimization of boundary pipes resulted in the reduction of the pressure in different parts of the network, such as areas with pressure higher than the average pressure of the network, and due to the reduced standard deviation of DMAs average pressure caused equitable distribution of network pressure.
 

کلیدواژه‌ها [English]

  • Community Structure Algorithm
  • Graph theory
  • Water Distribution Network
  • Pressure Management
  • District Metered Area (DMA)
Alvisi S (2015) A new procedure for optimal design of district metered areas based on the multilevel balancing and refinement algorithm. Journal of Water Resources Management  29(12):4397–4409
Alvisi S, Franchini M (2014) A heuristic procedure for the automatic creation of district metered areas in water distribution systems. Journal of  Urban Water 11(2):137–159
Araujo LS, Ramos H, Coelho ST (2006) Pressure control for leakage minimisation in water distribution systems management. Journal of Water Resources Management 20(1):133–149
Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008(10):1-12
Campbell E, Ayala-Cabrera D, Izquierdo J, Pérez-García R, Tavera M (2014) Water supply network sectorization based on social networks community detection algorithms. Journal of Procedia Engineering 89:1208–1215
Campbell E, Izquierdo J, Montalvo I, Ilaya-Ayza A, Pérez-García R, Tavera M (2015)  A flexible methodology to sectorize water supply networks based on social network theory concepts and multi-objective optimization. Journal of Hydroinformatics 18(1):62-76
Campbell E, Izquierdo J, Montalvo I, Pérez-García R (2016) A novel water supply network sectorization methodology based on a complete economic analysis, including uncertainties. Journal of Water 8(5):179
Ciaponi C, Murari E, Todeschini S (2016) Modularity-based procedure for partitioning water distribution systems into independent districts. Journal of Water Resources Management 30(6):2021–2036
Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Journal of Physical Review E-Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 70(6):6
Dahrazma V, Hessami Kermani MRH (2020) Evaluation of water distribution network partitioning methods based on graph theory using AHP. Journal of Water and Wastewater 31(5):11–24 (In Persian)
Diao K, Zhou Y, Rauch W (2013) Automated creation of district metered area boundaries in water distribution systems. Journal of Water Resources Planning and Management 139(2):184–190
Di Nardo A, Cavallo A, Di Natale M, Greco R, Santonastaso GF (2016) Dynamic control of water distribution system based on network partitioning. Journal of Procedia Engineering  154:1275–1282
Di Nardo A, Di Natale M, Giudicianni C, Greco R, Santonastaso GF (2017) Weighted spectral clustering for water distribution network partitioning. Journal of Appl Netw Sci 2(1):19
Di Nardo A, Di Natale M, Giudicianni C, Musmarra D, Santonastaso GF, Simone A (2015) Water distribution system clustering and partitioning based on social network algorithms. Journal of Procedia Engineering 119(1):196–205
Di Nardo A, Di Natale M, Giudicianni C, Santonastaso GF, Tzatchkov V, Varela JMR, Yamanaka VHA (2016) Water supply network partitioning based on simultaneous cost and energy optimization. Journal of Procedia Engineering  162:238–245
Di Nardo A, Di Natale M, Santonastaso GF, Tzatchkov V, Yamanaka VHA (2014a) Divide and conquer partitioning techniques for smart water networks. Journal of Procedia Engineering 89:1176–1183
Di Nardo A, Di Natale M, Santonastaso GF, Tzatchkov VG, Alcocer-Yamanaka VH (2014b) Water network sectorization based on graph theory and energy performance indices. Journal of Water Resources Planning and Management 140(5):620–629
Di Nardo A, Di Natale M, Santonastaso GF, Venticinque S (2013) An automated tool for smart water network partitioning.  Journal of Water Resources Management 27(13):4493–4508
Di Nardo A, Giudicianni C, Greco R, Herrera M, Santonastaso GF (2018) Applications of graph spectral techniques to water distribution network management. Journal of  Water 10(1):45
Eliades DG, Kyriakou M, Vrachimis SG, Polycarpou MM (2016) EPANET-MATLAB Toolkit: An open-source software for interfacing EPANET with MATLAB. In: Computing and Control for the Water Industry CCWI 2016
Farley M (2001) Leakage management and control: A best practice training manual. Who. World Health Organization, 163p
Ferrari G, Savic D (2015) Economic performance of DMAs in water distribution systems.  Journal of  Procedia Engineering 119(1):189–195
Fortunato S, Barthélemy M (2007) Resolution limit in community detection. Journal of Proceedings of the National Academy of Sciences of the United States of America 104(1):36–41
Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Journal of Proceedings of the National Academy of Sciences of the United States of America 99(12):7821–7826
Giudicianni C, Herrera M, Di Nardo A, Adeyeye K (2020a) Automatic multiscale approach for water networks partitioning into dynamic district metered areas. Journal of Water Resources Management 34(2):835–848
Giudicianni C, Herrera M, Di Nardo A, Carravetta A, Ramos HM, Adeyeye K (2020b) Zero-net energy management for the monitoring and control of dynamically-partitioned smart water systems. Journal of Cleaner Production 252:119745
Giustolisi O, Ridolfi L (2014) New modularity-based approach to segmentation of water distribution networks. Journal of Hydraulic Engineering 140(10)
Gomes R, Marques AS, Sousa J (2012) Decision support system to divide a large network into suitable district metered areas. Journal of Water Science And Technology 65(9):1667–1675
Grayman WM, Murray R, Savic DA (2009) Effects of redesign of water systems for security and water quality factors. In: World Environmental and Water Resources Congress 2009: Great Rivers,1–11
Hajebi S, Barrett S, Clarke A, Clarke S (2013) Multi-agent simulation to support water distribution network partitioning. In: 27th European Simulation and Modelling Conference–ESM’2013, 23–25 October, Eurosis, Lancaster, UK.
Herrera M, Canu S, Karatzoglou A, Pérez-García R, Izquierdo J (2010) An approach to water supply clusters by semi-supervised learning. In: Proceedings of the 9th International Congress on Environmental Modelling and Software, Ottawa, ON, Canada, 1 July 2010
Herrera M, Izquierdo J, Pérez-García R, Montalvo I (2012) Multi-agent adaptive boosting on semi-supervised water supply clusters. Journal of Advances in Engineering Software 50:131–136
Izquierdo J, Herrera M, Montalvo I, Pérez-García R (2009) Agent-based division of water distribution systems into district metered areas. In: ICSOFT (2), 2009 Jul 26-29, 83–90
Khoa Bui X, S Marlim M, Kang D, Bui XK, Marlim MS, Kang D (2020) Water network partitioning into district metered areas: a state-of-the-art review. Journal of Water (Switzerland)12(4):1002
Lambiotte R, Delvenne JC, Barahona M (2014) Random walks, Markov processes and the multiscale modular organization of complex networks. Journal of IEEE Transactions on Network Science and Engineering 1(2):76–90
Lifshitz R, Ostfeld A (2018) Clustering for analysis of water distribution systems. Journal of Water Resources Planning and Management 144(5):4018016
Liu J, Han R (2018) Spectral clustering and multicriteria decision for design of district metered areas. Journal of Water Resources Planning and Management 144(5):4018013
Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Journal of Physical Review E-Statistical, Nonlinear, and Soft Matter Physics 69(2):26113
Paola F De, Fontana N, Galdiero E, Giugni M, Savic D, Sorgenti Degli Uberti G (2014) Automatic multi-objective sectorization of a water distribution network. Journal of Procedia Engineering 89:1200–1207
Perelman L, Ostfeld A (2011) Topological clustering for water distribution systems analysis. Journal of Environmental Modelling & Software 26(7):969–972
Perelman LS, Allen M, Preis A, Iqbal M, Whittle AJ (2015) Automated sub-zoning of water distribution systems. Journal of Environmental Modelling & Software 65:1–14
Rossman LA (2000) EPANET 2: Users manual.
Scarpa F, Lobba A, Becciu G (2016) Elementary DMA design of looped water distribution networks with multiple sources.  Journal of Water Resources Planning and Management 142(6):4016011
Sempewo J, Pathirana A, Vairavamoorthy K (2008) Spatial analysis tool for development of leakage control zones from the analogy of distributed computing. In: Water Distribution Systems Analysis, 1–15
Shekofteh MR, Ghazizadeh MRJ (2020) The optimized implementation of the district metered areas in the water distribution networks using graph theory. Journal of Water and Wastewater 31(1):12–24 (In Persian)
Shekofteh MR, Jalili Ghazizadeh M, Yazdi J (2020) Theoretical identification of leakage areas in virtual district metered areas of water distribution networks using the artificial neural network. Journal of Iran-Water Resources Research 16(3):47-62 (In Persian)
Simone A, Giustolisi O, Laucelli DB (2016) A proposal of optimal sampling design using a modularity strategy. Journal of Water Resources Research 52(8):6171–6185
Tabesh M, Vaseti MM (2006) Leakage reduction in water distribution networks by minimizing the excess pressure. Journal of  Water Resources Research 2(2):53-66 (In Persian)
Tzatchkov VG, Alcocer-Yamanaka VH, Bourguett Ortíz V (2006) Graph theory based algorithms for water distribution network sectorization projects. In: 8th Annual Water Distribution Systems Analysis Symposium. Cincinnati, Ohio, USA. 2006,1–15
Zhang Q, Wu ZY, Zhao M, Qi J, Huang Y, Zhao H (2017) Automatic partitioning of water distribution networks using multiscale community detection and multiobjective optimization. Journal of Water Resources Planning and Management 143(9):04017057