تحلیل فراوانی چندمتغیره دبی اوج، بار رسوب معلق و بستر در حوضه کرج

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی منابع آب، گروه هیدرولوژی و منابع آب، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران

2 گروه هیدرولوژی منابع آب، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز

3 گروه مهندسی منابع آب، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

چکیده

برآورد بار رسوب معلق و بستر حمل‌شده توسط جریان، برای برنامه‌ریزی و ذخیره منابع آب مخازن سدها، مدیریت آبخیز، حفاظت سواحل و محیط زیست حائز اهمیت است. در این تحقیق تحلیل فراوانی چند‌متغیره بین مقادیر حداکثر سالانه دبی سیل، بار رسوب معلق و بار رسوب بستر در ایستگاه هیدرومتری سیرا کرج با توابع مفصل مختلف انجام شد. دوره زمانی مشترک بین متغیرهای بار رسوب معلق و بار رسوب بستر از سال آبی 89-1388 تا 99-1398 تعیین گردید. نتایج نشان می‌دهد که برترین توابع مفصل در تحلیل وابستگی بین متغیرهای دبی سیل- بار رسوب معلق، دبی سیل- بار رسوب بستر و بار رسوب معلق - بار رسوب بستر به ترتیبTawn،  Shih-Louis و Gaussian است. نتایج نشان می‌دهد که به ازای دوره بازگشت توام با سناریو “OR” برابر با 10 سال، مقادیر دبی سیل، بار رسوب معلق و بستر به ترتیب برابر با 125 مترمکعب در ثانیه، 100 هزار تن در روز و 2500 تن در روز می‌باشد. مقادیر با حداکثر احتمال وقوع بار رسوب معلق و بار رسوب بستر برای دوره بازگشت توام با سناریو “AND” برابر با 10سال، به ترتیب برابر با 45000 تن در روز و 1500 تن در روز است. نتایج نشان می‌دهد که بر اساس سناریو "AND" برای دوره بازگشت توام، مقادیر طراحی چندمتغیره بار رسوب معلق و بستر کوچکتر از مقادیر تک متغیره هستند. بنابراین نادیده‌گرفتن همبستگی بین بار رسوب معلق و بستر و دبی سیل ممکن است بطور قابل‌توجهی مقدار واقعی رسوب را بیشتر برآورد کند، در نتیجه احتمال وقوع متناظر بیشتر برآورد شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Multivariate Frequency Analysis of Peak Discharge and Suspended and Bed Sediment Load in Karaj Basin

نویسندگان [English]

  • Alireza Keihani 1
  • Hossein Fathian 3
1 Ph.D. Candidate of Water Resources Engineering, Department of Hydrology and Water Resources, Collage of Water Engineering and Environment, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 Department of Water Resources Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
چکیده [English]

Estimation of suspended and bed sediment load transferred by streamflow is important for planning and storing water in dam reservoirs, watershed management, coastal and environment protection. In this study, multivariate frequency analysis was performed between the maximum annual values of flood discharge, suspended sediment load and bed sediment load in Sierra Karaj hydrometric station with different copula functions. The common time period between the variables of suspended sediment load and bed sediment load was determined from the water year of 2009-2010 to 2019-2020. The results showed that the best copula functions in the analysis of dependency between the variables of flood discharge-suspended sediment load, flood discharge-bed sediment load and suspended sediment load-bed sediment load are Tawn, Shih-Louis and Gaussian, respectively. The results showed that for the joint return period equal to 10 years for the “OR” scenario, the values of flood discharge, suspended sediment load and bed sediment load are respectively equal to 125 cubic meters per second, 100 thousand tons per day and 2500 tons per day. Maximum probability of occurrence of suspended sediment load and bed sediment load for joint return period equal to 10 years for “AND” scenario are equal to 45000 tons per day and 1500 tons per day, respectively. According to the "AND" scenario for the joint return period, the multivariate design quantiles of the suspended and bed sediment loads are smaller than the univariate quantiles. Therefore, ignoring the correlation between suspended and bed sediment load and flood discharge may significantly overestimate the actual sediment value and, consequently, overestimate the corresponding occurrence probability.
 

کلیدواژه‌ها [English]

  • Copula functions
  • univariate analysis
  • Bivariate analysis
  • Dependency Analysis
  • Joint return period
Abbasian M and Jalali S (2015) Multivariate flood frequency analysis using copula with parametric and nonparametric marginal distribution function. Modares Civil Engineering Journal 14(4):81–92 (In Persian)
Abdollahi Asadabadi S, Akhond-Ali AM, and Mirabbasi Najafabadi R (2018) Analysis of joint and conditional return periods for several dependent characteristics of runoff hydrograph using copula functions (Case study: Kasiliyan watershed). Iran Water and Soil Research Journal 49(2):425-437 (In Persian)
Ahmadi F, Radmanesh F, Parham G, and Mirabbasi najafabadi R (2017) Application of archimedean copula functions in flood frequency analysis (Case study: Dez Basin). Iran Water and Soil Research Journal 48(3):477-489 (In Persian)
Bahremand A, Alvandi E, Bahrami M, Dashti Marvili M, Heravi H, Khosravi GR, Kornejady A, Samadi Arghini H, Tajiki M, and Teimouri M (2015) Copula functions and their application in stochastic hydrology. Journal of Conservation and Utilization of Natural Resources 4(2):1-20
Babiński Z (2005) The relationship between suspended and bed load transport in river channels. In Proc. Foz do Iguazu Symo. Sediment Budgets 1, edited by D. E. Walling and A. J. Horowitz, 182–188. Wallingford, UK: IAHS Press
Bacchi B, Becciu G, and Kottegoda NT (1994) Bivariate exponential model applied to intensities and durations of extreme rainfall. Journal of Hydrology 155(1-2):225–236
Bezak N, Matjaž M, and Mojca S (2014) Trivariate frequency analyses of peak discharge, hydrograph volume and suspended sediment concentration data using copulas. Water Resource Management 28(8):2195–2212
Bezak N, Rusjan S, Fijavž MK, Mikoš M, and Šraj M (2017) Estimation of suspended sediment loads using copula functions. Water 9(8):628
Bevacqua E, Maraun D, Hobæk Haff I, Widmann M, and Vrac M (2017) Multivariate statistical modelling of compound events via pair-copula constructions: Analysis of floods in Ravenna (Italy). Hydrology and Earth System Sciences 21(6):2701-2723
Brunner MI, Furrer R, and Favre AC (2019) Modeling the spatial dependence of floods using the Fisher
copula. Hydrology and Earth System Sciences 23(1):107-124
Bonacci O and Oskoruš D (2010) The changes in the lower Drava River water level, discharge and suspended sediment regime. Environmental Earth Sciences 59(8):1661-1670
Chen L, Singh VP, Guo S, Zhou J, and Zhang J (2015) Copula-based method for multisite monthly and daily streamflow simulation. Journal of Hydrology 528:369–384
De Michele C, Salvadori, G, Canossi M, Petaccia A, and Rosso R (2005) Bivariate statistical approach to check adequacy of dam spillway. Journal of Hydrologic Engineering 10(1):50–57
Frees EW and Valdez EA (1998) Understanding relationships using copulas. North American Actuarial Journal 2(1):1–25
Goodarzi M, Fatehifar A, Avazpoor F (2019) Bivariate analysis of the impact of climate change on drought with SPEI index and Coppola functions (Case study: Dugonbadan). Iran-Water Resources Research 15(4):352-365
Gräler B, van den Berg M, Vandenberghe S, Petroselli A, Grimaldi S, De Baets B, and Verhoest N (2013) Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation. Hydrology and Earth System Sciences 17(4):1281-96
Huang S, Li P, Huang Q, and Leng G (2017) Copula-based identification of the non-stationarity of the relation between runoff and sediment load. International Journal of Sediment Research 32(2):221-30
Khan F, Spöck G, and Pilz J (2020) A novel approach for modelling pattern and spatial dependence structures
between climate variables by combining mixture models with copula models. International Journal of
Climatology 40(2):1049-1066
Khanitemeliyeh Z, Rezaie H, Mirabbasi R (2020) Frequency analysis of trivariate drought characteristics properties using nested copula functions (Case study: Eastern Iran). Iran-Water Resources Research 16(2):202-213
Miao C, Ni J, Borthwick AG, and Yang L (2011) A preliminary estimate of human and natural contributions to the changes in water discharge and sediment load in the Yellow River. Global and Planetary Change 76(3-4):196-205
Nash JE and Sutcliffe JV (1970) River flow forecasting through conceptual models; part I: A discussion of principles. Journal of Hydrology 10:282-290
Nelsen RB (2006) An Introduction to Copulas. Springer Science & Business Media, 120 p.
Nazeri Tahroudi M, Ramezan Y, Michele CD, and Mirabbasi Najafabadi R (2020) Estimation of the joint frequency of peak flow discharge-suspended load of Zarinehrood Basin using two-dimensional analysis. Journal of Water and Soil 34(2):333-347 (In Persian)
Peng Y, Shi Y, Yan H ,and Zhang J (2020) Multivariate frequency analysis of annual maxima suspended sediment concentrations and floods in the Jinsha River, China. Journal of Hydrologic Engineering 25(9):05020029
Peng J, Chen S, and Dong P (2010) Temporal variation of sediment load in the Yellow River basin, China, and its impacts on the lower reaches and the river delta. Catena 83(2-3):135-147
Pelletier JD (2012) A spatially distributed model for the long‐term suspended sediment discharge and delivery ratio of drainage basins. Journal of Geophysical Research: Earth Surface 117(F2)
Rahimi L, Dehghani A, Abdolhosseini M, and Ghorbani K (2014) Flood frequency analysis using archimedean copula functions based on annual maximum series (Case study: Arazkuseh Hydrometric Station in Golestan Province). Iranian Journal of Irrigation and Drainage 8(2):353–365 (In Persian)
Rodríguez-Blanco, ML, Taboada-Castro MM, Palleiro L, and Taboada-Castro MT (2010) Temporal changes in suspended sediment transport in an Atlantic catchment, NW Spain. Geomorphology 123(1-2):181-188
Sadegh M, Moftakhari H, Gupta HV, Ragno E, Mazdiyasni O, Sanders, B, Matthew R, and AghaKouchak A (2018) Multihazard scenarios for analysis of compound extreme events. Geophysical Research Letters 45(11):5470-5480
Salari M, AkhoundAli AM, Adib A, and Daneshkhah AR (2015) Bivariate flood frequency analysis using the copula functions. Journal of Irrigation Science and Engineering 37:29–38 (In Persian)
Salvadori G, Michele CD, Kottegoda NT, Rosso R (2007) Extremes in nature: An approach using copulas. Springer Science & Business Media
Salvadori G, Durante F, and De Michele C (2011) On the return period and design in a multivariate framework. Hydrology Earth System Sciences 15(11):3293–3305
Salvadori G, Tomasicchio GR, and Alessandro FD (2014) Practical guidelines for multivariate analysis and design in coastal and offshore engineering. Coastal Engineering 88:1–14
Salvadori G, and De Michele C (2004) Frequency analysis via copulas: Theoretical aspects and applications to hydrological events. Water Resources Research 40(12)
Sraj M, Bezak N, and Brilly M (2015) Bivariate flood frequency analysis using the copula function: A case study of the Litija station on the Sava River. Hydrological Processes 29(2):225-38
Snyder WM (1962) Some possibilities for multivariate analysis in hydrologic studies. Journal of Geophysical Research 67(2):721–729
Syvitski JP and Milliman JD (2007) Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. The Journal of Geology 115(1):1-19
Tena A, Batalla RJ, Vericat D, and López-Tarazón JA (2011) Suspended sediment dynamics in a large regulated river over a 10-year period (the lower Ebro, NE Iberian Peninsula). Geomorphology 125(1):73-84
Vandenberghe S, Verhoest NEC, Onof C, and De Baets B (2011) A comparative copula-based bivariate frequency analysis of observed and simulated storm events: A case study on Bartlett-Lewis modeled rainfall. Water Resource Research 47:1-16
Vanmaercke M, Poesen J, Broeckx J, and Nyssen J (2014) Sediment yield in Africa. Earth-Science Reviews 136:350-368
Walling DE (2006) Human impact on land–ocean sediment transfer by the world's rivers. Geomorphology 79(3-4):192-216
Walling DE (2009) The impact of global change on erosion and sediment transport by rivers: Current progress and future challenges. UNESCO 26 p
Wong ST (1963) A multivariate statistical model for predicting mean annual flood in new England. Annals of the Association of American Geographers 53(3):298–311
Yang CT (1996) Sediment transport theory and practice. New York: McGraw-Hill, 396 p
Zhang L, and Singh VP (2006) Bivariate flood frequency analysis using the copula method. Journal of Hydrologic Engineering 11:150–164
Zhang D, Yan M, and Tsopanakis A (2018) Financial stress relationships among Euro area countries: An R-vine copula approach. The European Journal of Finance 24(17):1587-1608