برآورد ابرناکی در جو ایران با استفاده از فرآورده‌های ابر پرتوسنج طیفی تصویربرداری چندزاویه‌ای (MISR)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه جغرافیا، دانشکده علوم انسانی، دانشگاه زنجان، زنجان، ایران.

2 دانشجوی دکترای اقلیم شناسی، دانشکده علوم انسانی، گروه جغرافیا، دانشگاه زنجان، زنجان، ایران.

چکیده

 
ابرناکی از اهمیت ویژه‌ای در میان سایر عناصر اقلیمی برخوردار است و از جمله مباحث مهم در پیش‌بینی تغییرات اقلیمی در مقیاس جهانی و منطقه‌‌ای می‌باشد. هدف از این پژوهش بررسی توزیع مکانی و برآورد میانگین بلندمدت ابرناکی در مقیاس زمانی فصلی و ماهانه در محدوده‌ی جغرافیایی جو ایران است. بنابراین از فراورده‌های ابر سنجنده‌ی MISR ‌در طول سال‌های 2019-2001 استفاده گردید. فراورده‌های ابر مورد استفاده با گام‌های زمانی ماهانه و مکانی0.5° x 0.5° استخراج و پس از کنترل کیفی و پیش‌پردازش، برای ساخت لایه‌های شبکه‌ای به کار گرفته ‌شد. جهت بررسی صحت داده‌های ابرناکی سنجنده‌ی MISR از داده‎های پوشش ابر 44 ایستگاه هواشناسی سینوپتیک استفاده گردید. براساس نتایج؛ میانگین درصد ابرناکی در جو ایران حدود 25 درصد است ‌که در مقایسه با میانگین ابرناکی جهانی (50 درصد) ایران کشوری کم‌ابر می‌باشد. در بررسی بلندمدت، بیشینه‌ی ابرناکی در سواحل جنوبی و غربی دریای خزر و پس از آن در نواحی مرتفع آذربایجان، زاگرس و خراسان برآورد گردید. از سویی دیگر کمترین مقدار ابرناکی در گستره‌ی وسیعی از ایران مرکزی، شرق و جنوب‌شرق ایران مشاهده‌ شد. در میان فصول بیشترین درصد ابرناکی در فصل زمستان و کمترین مقدار آن در فصل تابستان به دست آمد. در مقیاس زمانی ماهانه مشخص گردید که بیشترین/کمترین درصد ابرناکی مربوط به ماه‎های فوریه/سپتامبر (بهمن/شهریور) است. این تفاوت‌ها نشان‎دهنده‌ی تغییرات وضعیت آب‌وهوایی در طول ماه‌های مختلف سال ‌است. از دیگر نتایج، روند کاهشی درصد ابرناکی در طول سری زمانی مورد مطالعه ‌است که بررسی آن از منظر گرمایش جهانی و تغییر‌اقلیم مهم می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of Cloud Fraction in the Atmosphere of Iran Using Multi-angle Imaging SpectroRadiometer (MISR)

نویسندگان [English]

  • Koohzad Raispour 1
  • Robabeh Razmi 2
1 Department of Geography, Faculty of Humanities, University of Zanjan, Zanjan, Iran.
2 PhD student in Climatology, Department of Geography, Faculty of Humanities, University of Zanjan, Zanjan, Iran.
چکیده [English]

Cloudiness is of particular importance among other climatic elements and is one of the important issues in predicting climate change on a global and regional scale. The purpose of this study is to investigate the spatial distribution and estimate the long-term average of cloudiness on a seasonal and monthly time scale in the geographical area of Iran's atmosphere. MISR products were used during the years 2001-2019. The cloud products used were extracted with monthly temporal resolution and spatial resolution of 0.5° x 0.5° and after quality control and preprocessing, were used to build network layers. Cloud cover data from 44 synoptic meteorological stations were used to verify the accuracy of the cloud data of the MISR sensor.Based on the results; The average percentage of cloudiness in Iran's atmosphere is about 25%, which is a with few cloud country compared to the global average cloudiness (50%) of Iran. In the long-term study, the maximum cloudiness was estimated on the southern and western coasts of the Caspian Sea and then in the highlands of Azerbaijan, Zagros and Khorasan. Among the seasons, the highest cloud fraction was estimated in winter and the lowest in summer. On a monthly time scale, it was found that the highest/ lowest amount of cloud fraction is related to February/September. These differences indicate changes in the weather during different months of the year. Another result is the decreasing trend of cloud fraction the study period, which is important in terms of global warming and climate change.

کلیدواژه‌ها [English]

  • Cloud Fraction
  • MISR Sensor
  • temporal and spatial distribution
  • Atmosphere of Iran
Amanda G, Michael F (2017) A MODIS-Derived value-added climatology of maritime cloud liquid water path that conserves solar reflectance. Journal of Applied Meteorology and Climatology 56(6):1767–1781
An N, Wang K (2015) A comparison of MODIS-Derived cloud fraction with surface observations at five SURFRAD sites. Journal of Applied Meteorology and Climatology 54(5):1009-1020
Bender F, Ramanathan V, Tselioudis T (2011) Changes in extratropical storm track cloudiness 1983-2008: Observational support for a poleward shift. Journal of Climatology Dynamic 38(9-10):2037–2053
Bodas-Salcedo A, Williams K, Ringer M, Beau I, Cole J, Dufresne J-L, Koshiro T, Stevens B, Wang Z, Yokohata T (2014) Origins of the solar radiation biases over the southern ocean in CFMIP2 models. Journal of Climate 27(1):41–56
Bony S, Colman R, Kattsov V, Allan R, Bretherton C, Dufresne J-L, Hall A, Hallegatte S, Holland M, Ingram W, Randall D, Soden B, Tselioudis G, Webb M (2006) How well do we understand and evaluate climate change feedback processes? Journal of Climate 19(15):3445–3482
Boucher O, Randall D, Artaxo P, Bretherton C (2013) Clouds and aerosols in climate change, the physical science basis, contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press 107:571–658
Bruegge C, Val S, Diner D, Jovanovic V, Gray E, Girolamo L, Zhao G (2014) Radiometric stability of the Multi-Angle Imaging Spectroradiometer (MISR) following 15 years on-orbit. Journal of Processing Earth Observing Systems 14:9218 – 9242
Caldwell P, Zelinka M, Taylor K, Marvel K (2016) Quantifying the sources of intermodel spread in equilibrium climate sensitivity. Journal of Climate 29(2):513–524
Ceppi P, Hartmann D (2015) Connections between clouds, radiation and midlatitude dynamics: A review. Journal of Current Climate Change 1(2):94–102
 Chopping M, Su L, Rango A, Martonchik  JV, Peters DPC, Laliberte A (2008) Remote sensing of woody shrub cover in desert grasslands using MISR with a geometric-optical canopy reflectance model. Journal of Remote Sensing of the Environment 112(1):19-34
Corbett G, Loeb N (2015) On the relative stability of CERES reflected shortwave and MISR and MODIS visible radiance measurements during the terra satellite mission. Journal of Climate Geophysics Research Atmosphere 120(22):11608–11616
Delgado A, Marshak A, Yang Y, Oreopoulos L (2020) Daytime variability of cloud fraction from DSCOVR/EPIC observations. Journal of Geophysical Research Letters 43(10):358–364

Desmons M, Wang P, Stammes P, Tilstra LG, Fresco B (2019) A fast cloud retrieval algorithm using oxygen B-band measurements 10 from GOME-2. Journal of Atmospheric Measurement Techniques 12:2485–2498

Di Girolamo L, Menzies A, Zhao G, Mueller K, Moroney C, Diner DJ (2010) MISR level 3 cloud fraction by altitude algorithm theoretical basis Jet Propulsion Laboratory Rep. Jet Propulsion Laboratory D-62358, 24pp
Diner DJ, Beckert JC, Reilly T, Bruegge C, Conel J (208) Multi-angle Imaging SpectroRadiometer (MISR) description and experiment overview. IEEE T. Geoscience Remote Sensing 36(4):1072–1087
Evan T, Heidinger A, Vimont D (2007) Arguments against a physical long-term trend in global ISCCP cloud amounts. Geophysics Research Letter 34(4):1029-1041
Geiss A, Marchand R (2019) Cloud responses to climate variability over the extratropical oceans as observed by MISR and MODIS. Journal of Atmospheric Chemestry Physic 19(11):7547–7565
Gordon N, Norris J, Weaver C, Klein S (2005) Cluster analysis of cloud regimes and characteristic dynamics of  midlatitude synoptic systems in observations and a model. Journal of Geophysics Research 110(D15):476–488
Gordon ND, Norris JR (2010) Cluster analysis of midlatitude oceanic cloud regimes: Mean properties and temperature sensitivity. Journal of Atmospheric Chemistry Physic 10(13):6435–6459
Hatami Bahman Biglou K, Movahedi S (2018) Seasonal and monthly identification of cloudy in Iran using Terra satellite Modis cloud sensor product data. Journal of Geography and Development 6(50):213-230 (In Persian)

Holger S, Steffen B, Steffen D, Marloes GP, De V, Christoph H, Christian B, Simon W, Thomas W ( 2020) MICRU background map and effective cloud fraction algorithms designed for UV/vis satellite instruments with large viewing angles. Journal of Atmospheric Measurement Techniques 10:1-58

Hubanks P, Platnick S, King M, Ridgway B (2015) MODIS atmosphere L3 gridded product algorithm theoretical basis document for C6. Journal of Applied Meteorology 31(7):732-741
Hwang YT, Frierson D (2013) Link between the double-intertropical convergence zone problem and cloud biases over the Southern ocean. Proceedings of the National Academy of Sciences of the United States of America 110:4935–4940
Hyer EJ, Reid JS, Zhang J (2011) An over-land aerosol optical depth data set for data assimilation by filtering, correction, and aggregation of MODIS Collection 5 optical depth retrievals. Journal of Measurement Techniques 4(3): 379 - 408
Jones PA (1992) Cloud-cover distributions and correlations. Journal of Applied Meteorology 31(7):732-741
Kaviani M, Alijani B (2013) Fundamentals of climatology. Samat Publications, 16th Edition, 600p (In Persian)
Kay J, Wall C, Yettella V, Medeiros B, Hannay C, Caldwell P, Bitz C (2016) Global climate impacts of fixing the southern ocean shortwave radiation bias in the Community Earth System Model (CESM). Journal of Climate 29(12):4617–4636
Kay JE, Hillman BR, Klein SA, Zhang Y, Medeiros R, Pincus R, Gettelman A, Eaton B, Boyle J, Marchand R, Ackerman T (2012) Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators. Journal of Climate 25(15):5190–5207
King MD, Platnick S, Menzel WP, Ackerman S A, Hubanks PA (2013) Spatial and temporal distribution of clouds observed by modis onboard the terra and aqua satellites. IEEE transactions on Geoscience and Remote Sensing 51(7):3826-3852
 Kotarba A Z (2009) A comparison of MODIS derived cloud amount with visual surface observations. Journal of Atmospheric Research 92(4):522-530
Li Y, Thompson D (2016) Observed signatures of the Barotropic and Baroclinic annular modes in cloud vertical structure and cloud radiative effects. Journal of Climate 29(13):4723–4740
Li Y, Thompson D, Huang Y, Zhang M (2014a) Observed linkages between the northern annular mode/North-Atlantic Oscillation, cloud incidence, and cloud radiative forcing. Journal of Geophysics Research Letter 41(5):1681–1688
Li Y, Thompson D, Stephens G, Bony S (2014b) A global survey of the instantaneous linkages between cloud vertical structure and large scale climate. Journal of Geophysics Research Atmospheric 119(7):3770–3792
Li Z, Jun Li W, Paul M, Timothy J, Schmit A (2007) Comparison between current and future environmental satellite images on cloud classification using MODIS. Journal of Remote Sensing of Environment 108(3):311-326
Limbacher JA, Kahn RA (2017) Updated MISR dark water research aerosol retrieval algorithm– Part 1: Coupled 1.1 Km Ocean surface chlorophyll a retrievals with empirical calibration corrections. Journal of Atmospheric Measurement Technic 10:1539–1555
Lorente A, Boersma KF, Stammes P, Tilstra G, Richter A, Yu H, Kharbouche S, Muller JP (2017) The importance of surface reflectance anisotropy for cloud and NO2 retrievals from GOME-2 and OMI. Journal of Atmospheric Measurement Techniques 11(7):4509–4529
Marchand R (2013) Trends in ISCCP, MISR and MODIS cloud-top-height and optical-depth histograms. Journal of Geophysics Research 118(4):1941–1949
Marchand R, Ackerman T, Smyth M, Rossow W (2010) A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS. Journal of Geophysics Research 115(D1):693–718
Masoodian SA, Kaviani MR (2008) Climatology of  Iran. First Edition, Isfahan University Press, 179p (In Persian)
Mir Rahimi M (2007) Classification of cloud types using AVHRR sensor images. M.Sc. Thesis in Remote Sensing, University of Tabriz (In Persian)
Mobasheri M, Rezaei Y (2007) Fog detection and St Short clouds using MSG-1 satellite imagery. Journal of the Faculty of Engineering 40(8):1107–1119 (In Persian)
Norris J, Allen R, Evan A, Zelinka M, O'Dell C, Klein S (2016) Evidence for climate change in the satellite cloud record. Nature 536(7614):72–75
Norris J Evan A (2015) Empirical removal of artifacts from the ISCCP and PATMOS-x satellite cloud records. Journal of Atmospheric Ocean Technology 32(4):691–702
Otkin JA and Greenwald TJ (2008) Comparison of WRF model-simulated and MODIS-derived cloud data. Journal of Monthly Weather Review 136(6):1957-1970
Parajka J, Bloschl G (2008) Spatio-temporal combination of MODIS images-potential for snow cover mapping, Water Recourse Research 44(3):3406–3417
Peterson C A, Yue Q, Kahn B H, Fetzer E, Huang X (2020) Evaluation of AIRS cloud phase classification over the Arctic Ocean against combined cloud Sat-CALIPSO observations. Journal of Applied Meteorology and Climatology 59(8):1277–1294
Platnick S, Meyer K, King M, Wind G, Amarasinghe N, Marchant B, Arnold G, Zhang Z, Hubanks P, Holz R, Yang P, Ridgway W, Riedi J (2017) The MODIS cloud optical and microphysical products: Collection 6 Updates and Examples from Terra and Aqua, IEEE T. Journal of Geoscience Remote Sensing 55(1):502–524
Qasemi AR (2012) Modeling the temporal and spatial changes of cloud cover, with emphasis on rainy days in Iran. Ph.D. Thesis in Natural Geography, Climatology, University of Tabriz (In Persian)
Raispour K, Khosravi M (2019) Analysis of long term behavior of Aerosol Optical Depth (AOD) in Sistan Plain using MERRA-2 model. 2nd International Conference on Dust in Southwest Asia, Zabol (In Persian)
Rasooli AA, Jahanbakhsh S, Ghasemi AR (2013) Investigation of temporal and spatial changes in cloud cover in Iran. Journal of Geographical Research 28(3):85-112 (In Persian)
Rasooli AA, Jahanbakhsh S, Ghasemi AR (2014) Investigating the relationship between important parameters of cloud and daily rainfall in Iran. Journal of Geographical Research 20:23–42 (In Persian)
Sadeghi Hosseini SA, Hojam S, Tofang Saz P (2005) the relationship between rainwater, clouds and observed rainfall in Tehran. Journal of Earth and Space Physics 31 (2): 13-21 (In Persian)
Sahraian F, Rahimzadeh F, Pedram M (2004) The trend of the average annual cloud cover and the decrease of the average annual maximum temperature in a number of stations in the Iran. Newar 45:7–19 (In Persian)
Schneider N and Cornuelle B (2005) The forcing of the pacific decadal oscillation. Journal of Climate 18(21):4355–4373
Trenberth K, Fasullo J (2010) Simulation of present-day and twenty-first-century energy budgets of the southern oceans. Journal of Climate 23(2):440–454
Tselioudis G, Zhang Y, Rossow W (2000) Cloud and radiation variations associated with northern midlatitude low and high sea level pressure regimes. Journal of Climate 13(2):312–327
Vignesh AU, Pangaluru P, Kishore SH, Smay T, Brighton N, Velicogna I (2020) Assessment of CMIP6 cloud fraction and comparison with satellite observations. Journal of Earth and Space Science 7(2):1-21