بررسی اثرات تغییر اقلیم بر دبی، نیترات و عملکرد محصول در بالادست سد استقلال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی و مدیریت منابع آب/ دانشکده عمران، آب و محیط زیست، پردیس فنی و مهندسی شهید عباسپور، دانشگاه شهید بهشتی، تهران، ایران.

2 استادیار/ گروه منابع آب، دانشکده عمران، آب و محیط زیست، پردیس فنی و مهندسی شهید عباسپور، دانشگاه شهید بهشتی، تهران، ایران.

3 دانشجوی دکتری مهندسی و مدیریت منابع آب/ دانشکده عمران، آب و محیط زیست، پردیس فنی و مهندسی شهید عباسپور، دانشگاه شهید بهشتی، تهران، ایران.

چکیده

در این مقاله برای بررسی اثرات تغییر اقلیم بر دبی و کیفیت آب ورودی به سد استقلال در حوضه آبریز میناب از مدل SWAT استفاده شده است. اثرات 4 سناریو (RCP2.6، RCP4.5، RCP6 و RCP8.5) در 5 مدل GCM (GFDL-ESM2M، MIROC، IPSL-CM5A-LR، HadGEM2-ES و NoerESM1-M) بر دبی، نیترات و عملکرد محصول بررسی شد. طبق تحلیل‌ها و بررسی به عمل آمده تحت سناریوهای مختلف تغییر اقلیم بیشترین کاهش و افزایش میانگین بارش سالانه به ترتیب مربوط به سناریو RCP8.5 و RCP6 مدل NoerESM1-M با میزان 8/34 و 2/37 درصد است. در وضع موجود سهم بارش در فصل زمستان 8/65، بهار 1/5، تابستان 8/1 و پاییز 4/27 درصد است. تغییر عملکرد محصولات بستگی به نوع محصول و دوره آبیاری آن دارد. به دلیل اینکه 77 درصد نیاز آبی محصول باقلا در زمستان است میانگین عملکرد این محصول 19 درصد افزایش می‌یابد، زیرا طبق نتایج مدل‌ها سهم بارش در زمستان 9 درصد افزایش می‌یابد. همچنین 75 درصد از نیاز آبی گندم و 44 درصد از نیاز آبی بادمجان در فصول پاییز و زمستان است که افزایش و ثبات بارش در این فصل‌ها باعث تغییرات اندک عملکرد این محصولات شده است. در مقابل 80 درصد نیاز آبی محصول ذرت در تابستان است و با توجه به کاهش شدید بارش در فصل‌ تابستان (15 درصد)، عملکرد محصول ذرت 17 درصد کاهش داشته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the effect of climate change on discharge, NO3 load, and agricultural products yield upstream of Esteghlal dam

نویسندگان [English]

  • Hossein Yousefi 1
  • Ali Moridi 2
  • Jafar Yazdi 2
  • Ahmad KhazaiePoul 3
1 M.Sc. of Water Resources Management and Engineering, Water Resources Engineering Department, Civil, Water and Environmental Engineering Faculty, Shahid Beheshti University, Tehran, Iran.
2 Assistant Professor of Civil Engineering, Water Resources Engineering Department, Civil, Water and Environmental Engineering Faculty, Shahid Beheshti University, Tehran, Iran.
3 Ph.D. Candidate, Water Resources Engineering Department, Civil, Water and Engineering Environmental Faculty, Shahid Beheshti University, Tehran, Iran.
چکیده [English]

In this paper, the SWAT model is used to study the effects of climate change on discharge and water quality of inflow of Esteghlal reservoir in Minab catchment. Climate change scenarios (RCP2.6, RCP4.5, RCP6, and RCP8.5) in 5 GCMs (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC, NoerESM1-M) to simulate future discharge, NO3 load, and agricultural products yield, were applied. According to the analysis of different climate change scenarios, the highest average annual precipitation decrease and increase were 34.8% and 37.2% in RCP8.5 and RCP6 scenarios in NoRESM1-M model, respectively. In the baseline period, the share of precipitation in winter is 65.8%, spring 5.1%, summer 1.8% and fall 27.4%. Crop yield change depends on the type of crop and its irrigation period. Because of the 77% water requirement of lima bean crop in winter, the average yield of this crop increases by 19%, as models show that the share of precipitation in winter increases by 9%. Also, 75% of water requirement of wheat and 44% of water requirement of eggplant is in autumn and winter that increased and stabilized rainfall in these seasons caused slight variations in yield. In contrast, 80%of water requirement of corn crop is in summer, and due to the severe decrease in precipitation in summer (15%), corn yield has decreased by 17%.

کلیدواژه‌ها [English]

  • climate change
  • SWAT
  • Basin’s quality and quantity management
  • NO3
  • crop yield
Abbaspour K (2015) SWAT- Calibration and Uncertainty Programs (CUP). Neprashtechnology.Ca. Available at: http://www.neprashtechnology.ca/wp-content/uploads/2015/06/Usermanual_SwatCup.pdf
Abbaspour KC, Rouholahnejad E, Vaghefi S, Srinivasan R, Yang H, and Kløve B (2015a) A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology 524:733–752, Available at: http://dx.doi.org/10.1016/j.jhydrol.2015.03.027
Abbaspour KC, Rouholahnejad E, Vaghefi S, Srinivasan R, Yang H, and Kløve B (2015b) A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology 524:733–752, Available at: http://dx.doi.org/10.1016/j.jhydrol.2015.03.027
Arnold JG and Fohrer N (2005) SWAT2000: current capabilities and research opportunities in applied watershed modelling. Hydrological Processes 19(3):563–572
Arnold JG, Moriasi DN, Gassman PW, Abbaspour KC, White MJ, Srinivasan R, Santhi C, Harmel RD, Van Griensven A, and Van Liew MW (2012) SWAT: Model use, calibration, and validation. Transactions of the ASABE. American Society of Agricultural and Biological Engineers 55(4):1491–1508
Arnold JG, Srinivasan R, Muttiah RS, and Williams JR (1998) Large area hydrologic modeling and assessment part I: model development 1. JAWRA Journal of the American Water Resources Association 34(1):73–89
Ashraf Vaghefi S, Abbaspour N, Kamali B, and Abbaspour KC (2017) A toolkit for climate change analysis and pattern recognition for extreme weather conditions- Case study: California-Baja California Peninsula. Environmental Modelling and Software 96:181–198
Babania F, Morid S, and Shokri A (2019) Assessment of the capacity of current agricultural water management of Zayaneh Rud Basin for adaptation to climate change using Robust Decision Making technique. Iran-Water Resources Research 14(5):31–41 (In Persian)
Beven KJ (2011) Rainfall-runoff modelling: the primer. John Wiley & Sons
Castellia G, Minellib A, Teferab ML, Brescia E, Hagosc EY, Embayec TG, and Sebhatleabd M (2017) Impacts of rainwater harvesting and rainwater management on upstream–downstream agricultural ecosystem services in two catchments of southern Tigray, Ethiopia. Chemical Engineering 58
Chen Y, Marek GW, Marek TH, Moorhead JE, Heflin KR, Brauer DK, Gowda PH, and Srinivasan R (2019) Simulating the impacts of climate change on hydrology and crop production in the Northern High Plains of Texas using an improved SWAT model. Agricultural Water Management 221:13–24
Clarke L, Wise M, Kim S, Smith S, and Lurz J (2007) Model documentation for the minicam climate change science program stabilization scenarios: Ccsp product 2.1 a. Pacific Northwest National  … (July). Available at: /citations?view_op=view_citation&continue=/scholar%3Fhl%3Den%26start%3D108%26as_sdt%3D0,21%26scilib%3D1&citilm=1&citation_for_view=TZR356oAAAAJ:UebtZRa9Y70C&hl=en&oi=p
Du X, Shrestha NK, and Wang J (2019) Assessing climate change impacts on stream temperature in the Athabasca River Basin using SWAT equilibrium temperature model and its potential impacts on stream ecosystem. Science of the Total Environment 650:1872–1881
Ficklin DL, Luo Y, Luedeling E, and Zhang M (2009) Climate change sensitivity assessment of a highly agricultural watershed using SWAT. Journal of Hydrology 374(1–2):16–29
Freund ER, Abbaspour KC, and Lehmann A (2017) Water resources of the Black Sea Catchment under future climate and landuse change projections. Water (Switzerland) 9(8):1–18
Fujino J, Nair R, Kainuma M, Masui T, and Matsuoka Y (2006) Multi-gas mitigation analysis on stabilization scenarios using aim global model. Energy Journal 27(SPEC. ISS. NOV.):343–353, Available at: http://www.iaee.org/en/publications/ejarticle.aspx?id=2199
Guse B, Pfannerstill M, Strauch M, Reusser DE, Lüdtke S, Volk M, Gupta H, and Fohrer N (2016) On characterizing the temporal dominance patterns of model parameters and processes. Hydrological Processes 30(13):2255–2270
Hallegatte S, Rogelj J, Allen M, Clarke L, Edenhofer O, Field CB, Friedlingstein P, Van Kesteren L, Knutti R, and Mach KJ (2016) Mapping the climate change challenge. Nature Climate Change, Nature Publishing Group 6(7):663
Hijioka Y, Matsuoka Y, Nishimoto H, Masui T, and Kainuma M (2008) Global GHG emission scenarios under GHG concentration stabilization targets. Journal of Global Environment Engineering 13:97–108
Leta OT, El-Kadi AI and Dulaiova H (2016) Assessing the impact of climate change on extreme streamflow and reservoir operation for Nuuanu Watershed, Oahu, Hawaii. AGU Fall Meeting Abstracts
Malagò A, Efstathiou D, Bouraoui F, Nikolaidis NP, Franchini M, Bidoglio G, and Kritsotakis M (2016) Regional scale hydrologic modeling of a karst-dominant geomorphology: The case study of the Island of Crete. Journal of Hydrology 540:64–81
Marek GW, Gowda PH, Marek TH, Porter DO, Baumhardt RL, and Brauer DK (2017) Modeling long-term water use of irrigated cropping rotations in the Texas High Plains using SWAT. Irrigation Science 35(2):111–123
Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque J-F, Matsumoto K, Montzka SA, Raper SCB, and Riahi K (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109(1–2):213
Misaghi F and Noori M (2018) Simulation of nitrate input from agricultural land to the river using the SWAT model (Case study: Zanjanrood). Iran-Water Resources Research 14(2):155–168 (In Persian)
Nassiri M, Koocheki A, Kamali GA, and Shahandeh H (2006) Potential impact of climate change on rainfed wheat production in Iran: (Potentieller Einfluss des Klimawandels auf die Weizenproduktion unter Rainfed-Bedingungen im Iran). Archives of Agronomy and Soil Science 52(1):113–124
Nazari Mejdar H, Moridi A, Yazdi J, and KhazaiePoul A (2019) Sustainability outlook of domestic and agricultural demand of dusti dam considering climate change scenarios and impact of Salma Dam. Iran-Water Resources Research 15(3):17–32 (In Persian)
Neitsch SL, Arnold JG, Kiniry JR, and Williams JR (2009) Soil and water assessment tool theoretical documentation. Blackland Research Center, Temple, TX 647
Nerantzaki SD, Giannakis G V, Efstathiou D, Nikolaidis NP, Sibetheros IΑ, Karatzas GP, and Zacharias I (2015) Modeling suspended sediment transport and assessing the impacts of climate change in a karstic Mediterranean watershed. Science of the Total Environment 538:288–297
Osei MA, Amekudzi LK, Wemegah DD, Preko K, Gyawu ES, and Obiri-Danso K (2019) The impact of climate and land-use changes on the hydrological processes of Owabi catchment from SWAT analysis. Journal of Hydrology: Regional Studies 25:100620
Pyke C, Warren MP, Johnson T, LaGro Jr J, Scharfenberg J, Groth P, Freed R, Schroeer W, and Main E (2011) Assessment of low impact development for managing stormwater with changing precipitation due to climate change. Landscape and Urban Planning 103(2):166–173
Rao S and Riahi K (2006) The role of Non-CO greenhouse gases in climate change mitigation: Long-term Scenarios for the 21st Century. The Energy Journal. International Association for Energy Economics 27:177–200. Available at: http://www.jstor.org/stable/23297081
Riahi K, Grübler A, and Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technological Forecasting and Social Change 74(7):887–935
Schmalz B, Kuemmerlen M, Kiesel J, Cai Q, Jähnig SC, and Fohrer N (2015) Impacts of land use changes on hydrological components and macroinvertebrate distributions in the Poyang lake area. Ecohydrology 8(6):1119–1136
Schuol J and Abbaspour KC (2006) Calibration and uncertainty issues of a hydrological model (SWAT) applied to West Africa. Advances in Geosciences 9:137–143
Sinnathamby S, Douglas-Mankin KR, and Craige C (2017) Field-scale calibration of crop-yield parameters in the Soil and Water Assessment Tool (SWAT). Agricultural Water Management 180:61–69
Smith SJ and Wigley TML (2006) Multi-gas forcing stabilization with Minicam. The Energy Journal, JSTOR 373–391
Song X, Duan Z, Kono Y, and Wang M (2011) Integration of remotely sensed C factor into SWAT for modelling sediment yield. Hydrological Processes 25(22):3387–3398
Stocker T (2014) Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press
Van Quan N and Kim G (2014) Assessment of climate change effects on future drought levels by combining a hydrological model and Standardized Precipitation Index (SPI) in the Nakdong river basin, Korea. International Journal of Water Resources and Environmental Engineering 6(9):239–251
Van Vuuren DP, Den Elzen MGJ, Lucas PL, Eickhout B, Strengers BJ, Van Ruijven B, Wonink S, and Van Houdt R (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Climatic Change 81(2):119–159
Van Vuuren DP, Eickhout B, Lucas PL, and Den Elzen MGJ (2006) Long-term multi-gas scenarios to stabilise radiative forcing-exploring costs and benefits within an integrated assessment framework. The Energy Journal, JSTOR 201–233
Wise M, Calvin K, Thomson A, Clarke L, Bond-Lamberty B, Sands R, Smith SJ, Janetos A, and Edmonds J (2009) Implications of limiting CO2 concentrations for land use and energy. Science, American Association for the Advancement of Science 324(5931):1183–1186
Woznicki SA, Nejadhashemi AP, Abouali M, Herman MR, Esfahanian E, Hamaamin YA, and Zhang Z (2016) Ecohydrological modeling for large-scale environmental impact assessment. Science of the Total Environment 543:274–286
Yang J, Reichert P, Abbaspour KC, and Yang H (2007) Hydrological modelling of the Chaohe Basin in China: Statistical model formulation and Bayesian inference. Journal of Hydrology 340(3–4):167–182
Yang X, Liu Q, Fu G, He Y, Luo X, and Zheng Z (2016) Spatiotemporal patterns and source attribution of nitrogen load in a river basin with complex pollution sources. Water Research 94:187–199
Ye L and Grimm NB (2013) Modelling potential impacts of climate change on water and nitrate export from a mid-sized, semiarid watershed in the US Southwest. Climatic Change 120(1–2):419–431