Assessment of Kashan Aquifer-Land Use Composite Vulnerability Impact on Groundwater Pollution Using DRASTIC Method and Degradation Model

Document Type : Original Article

Author

M.Sc. Graduated in Natural Resources Engineering-Environmental Pollutions of Shahid Beheshti University, Tehran & Member of Young Researchers and Elite Club of Islamic Azad University, Naragh Branch

Abstract

Assessment of aquifer vulnerability and contamination is necessary for management, development and land use allocation, qualitative monitoring, pollution prevention and the groundwater protection. In this study, Degradetion and DRASTIC models using GIS technique (combining by Index-Overlay method) was used for assessment of Kashan aquifer land use and vulnerability impact on groundwater pollution. In prepared map of DRASTIC model, demonstrates determination coefficient of 26%, significant level of 0.05 with nitrate concentrations in aquifer and DRASTIC-LU model demonstrates significant level of 0.05 and determination coefficient of 31.5% by added land use (LU) layer. Based on this model was found 1.1 percent of aquifer has high vulnerability in northwest, west and south of aquifer due to land uses of urban, industrial and farmland, high net recharge, sand and high coarse-grain material in impact of vadose zone, aquifer media, soil media. Also land uses of industrial, gardenland, cropland, urban, dry farmland, moorland, grassland with rates of 10, 9, 8, 7, 5.5, 2.5, 2 respectively demonstrates most nitrate pollution effect on groundwater by the use of Degradation model and demonstrates inherent risk of 0.45 and significant level of 0.05 based on partial correlation.

خراسانی‌زاده ح، دلخواه ع، مزروعی ع (1386) مطالعه مقایسه‌ای مصارف آب کشاورزی و شهری از نظر کمی و کیفی و تاثیر چگونگی برداشت بر روی منابع آب و پیش بینی آینده در دشت کاشان. شرکت آب و فاضلاب کاشان، 233ص.
سازمان آب کاشان (1390) سطح آب زیرزمینی دشت کاشان.
سازمان آب و خاک کشور (1388) نقشه قابلیت انتقال آبخوان کاشان.
سازمان آب و فاضلاب کاشان (1391) یون نیترات آب زیرزمینی کاشان.
صمدی ج (1394) بهینه‌سازی مدل DRASTIC جهت ارزیابی آسیب‌پذیری آبهای زیرزمینی آبخوان کاشان به آلودگی نیترات با استفاده از روش‌های آماری. زمین‌شناسی ایران، سال 9، شماره 35.
صمدی ج (1394) مدل‌سازی مکانی – زمانی تراز سطح آبهای زیرزمینی مناطق شهری و روستایی آبخوان کاشان با استفاده از GIS. علوم و تکنولوژی محیط‌زیست، سال 17، شماره 4.
مهندسین مشاور پایندآب توان (1388) گزارش مطالعات بیلان منابع آب محدوده مطالعاتی کاشان سال آبی 87-88. شرکت مدیریت منابع آب ایران، آب منطقه‌ای اصفهان، 77ص.
یغمایی ه، مرادی ح‌ر (1388) اثر نوع کاربری اراضی بر آلودگی آبهای زیرزمینی به نیترات و فسفر در استان مازندران (شهرستان نور). دومین همایش اثرات خشکسالی و راهکارهای مدیریت آن، 4ص.
Aller L, Bennet T, Leher JH, Petty R, Aller J, Hackett G (1987) DRASTIC: A standardized system for evaluating ground water pollution potential using hydrogeologic settings. E.P.A., Report, No.600/2-87-035, 622p.
Baalousha H (2006) Vulnerability assessment for the Gaza Strip, Palestine using DRASTIC. Environmental Geology, 50(3): 405-414
Baier K, Schmitz KS, Azzam R, Strohschön R (2014) Management tools for sustainable ground water protection in mega urban areas – small scale land use and ground water vulnerability analyses in Guangzhou, China. J. Environ. Res, 8(2): 249-262.
Connell LD, Daele GVD (2003) A quantitative approach to aquifer vulnerability mapping. J. Hydrology, 276(1-4): 71-88.
Environmental Protection Agency (1996) Environmental indicators of water quality in the United States. US Environmental Protection Agency, Office of Water, EPA 841-R-96-002, 25p.
Guler C, Kurt MA, Korkut RN (2013) Assessment of groundwater vulnerability to nonpoint source pollution in a Mediterranean coastal zone (Mersin, Turkey) under conflicting land use practices. Ocean & Coastal Management, 71: 141-152.
Hentati I, Zairi M, Ben Dhia H (2011) A statistical and geographical information system analysis for groundwater intrinsic vulnerability: a validated case study from Sfax–Agareb, Tunisia. J. Water and Environment, 25(3): 400-411.
Makhdoum MF (2002) Degradation model: a quantitative EIA instrument, acting as a decision support system (DSS) for environmental management. Environ. Manage, 30(1): 151-156.
Margat J (1968) Vulnerabilite des nappes deau souterraine a la pollution (groundwater vulnerability to contamination). Bases dela cartographie, (Doc) BRGM, 68SGL198 HYD, Orleans France.
Panagopoulos GP, Antonakos AK, Lambrakis NJ (2006) Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS. J. Hydrogeol, 14(6): 894-911.
Piscopo G (2001) Groundwater vulnerability map explanatory notes, Castlereagh Catchment, NSW. Department of Land and Water Conservation, Australia.
Rai SC, Kumari P (2012) Assessment of groundwater contamination from land use/cover change in rural-urban fringe of national capital terrytory of Delhi (India). Geography, 8(2): 31-46.
Ranjan P, Das GA, Kazama S, Sawamoto M (2007) Assessment of aquifer-land use composite vulnerability in Walawe river basin, Sri Lanka. Asian Journal of Water, Environment and Pollution, 4(2): 1-10.
Rosen LA (1994) A study of the DRASTIC methodology with emphasis on Swedish conditions. Groundwater, 32(2): 278-285.
Voudouris K, Kazakis N, Polemio M, Sifaleras A (2010) An agricultural decision support system for optimal land use regarding groundwater vulnerability. International Journal of Information Systems and Social Change Global, 1(4): 66-79.
Vrba J, Zaporozec A (1994) Guidebook on mapping ground- water vulnerability. IAH International Contribution for