Assessment of changes in hydro-meteorological variables upstream of Helmand Basin during the last century using CRU data and SWAT model

Document Type : Original Article

Authors

1 MSc Student in Water Resources Management, Tarbiat Modares University, Department of Water Resources

2 Expert of Boundary Rivers and Shared Waters Bureau, Ministry of Energy Tehran

3 Professor of Tarbiat Modares University of Tehran, Department of Water Resources Management

4 Assist-Professor of Tarbiat Modares University of Tehran, Department of Water Resources Management

Abstract

Helmand River basin upstream Kajakai dam (Afghanistan), has a considerable role in its annual water yield. In order to deal with the ever going water conflict between Iran and Afghanistan, the knowledge about this basin’s long term hydro-meteorological conditions can be a useful measure for exploitation of the basin’s water resources. It is obvious that such an evaluation needs long term data that is a serious obstacle in Afghanistan due to the poor hydro-infrastructures. For such region with serious scarcity of data, application of the global databases and rainfall-runoff models can be a good alternative. The CRU database is one of these databases with relevant temporal and spatial resolution, which contains these climate data since 1901. SWAT model is also a well know rainfall-runoff model that has been applied for a few trans-boundary basins. Nevertheless, any application of CRU data and SWAT needs pre-assessments, which construct the main objectives of this research work. For this, the paper compared CRU data with the observed data of 17 meteorological stations in Afghanistan that resulted 313 mm compared to 323 mm as annual precipitation for the study area (the upper Helmand). The next step relates to calibration and validation of SWAT, which were done by a limited observed discharge data (1969 to 1979). Furthermore, the model was run using measured and CRU climate data, which the latter performed better. The results of SWAT for the entire period of CRU data set (1913-2012) revealed that there is heterogeneity between the time series before and after 1940, such that the annual rainfall decreases and annual temperature increases. Same behavior was seen for the time series of discharges and its annual average of discharges decreases from 8.1 BMC to 6.07 BMS for the same period. One of the considerable points of this research work is its methodology that can be applied for other transboundary river basins.  

Keywords


ایران­نژاد پ، احمدی­گیوی ف و پازوکی ر (1388) نقش روش­های متفاوت پارامترسازی همرفت در شبیه­سازی میدان­های دما و بارش زمستانی با مدل منطقه­ای – اقلیمی RegCM در منطقه ایران. مجله فیزیک زمین و فضا، دوره 35، شماره 1: 101-120.
تجریشی م (1382) پروژه رودخانه­های مرزی - حوضه آبریز هیرمند. دفتر مطالعات آب و محیط زیست (EWRC)، دانشگاه صنعتی شریف. 340 صفحه.
حاجی حسینی ح، حاجی حسینی م، مرید س و دلاور م، (1393). مدل‌سازی هیدرولوژیکی بالادست حوضه فرامرزی هیرمند با استفاده از مدل SWAT ، مجله علوم و فنون کشاورزی و منابع طبیعی دانشگاه صنعتی اصفهان، در نوبت چاپ. 
سبزی­پرور ع، شادمانی م (1390) تحلیل روند تبخیر و تعرق مرجع با استفاده از آزمون من-کندال و اسپیرمن در مناطق خشک ایران. نشریه آب و خاک (علوم و صنایع کشاورزی)، جلد 25، شماره 4: 823-834.
فتحیان ف (1390) بررسی روند تغییرات کاربری اراضی با استفاده از فن آوری سنجش از دور و متغیرهای آب و هواشناسی در حوضه دریاچه ارومیه .‌پایان­نامه کارشناسی ارشد، دانشگاه تربیت مدرس.
Akhtar M, Ahmad N and Booij M J (2009) Use of regional climate model simulations as input for hydrological models for the Hindukush-Karakorum-Himalaya region. Hydrology and Earth System Science 13(7):1075-1089.
Acres International Corporation Amherst, New York (2004) Kajakai Hydroelectric Project Condition Assessment Dam, Safety Assessment Report
Arnold JG, Kiniry JR, Srinivasan R, Williams JR, Haney EB, Neitsch SL (2011) Soil and Water Assessment Tool Input/Output File Documentation: Version 2009.
Abbaspour K C (2007) User manual for SWAT-CUP. SWAT calibration and uncertainty analysis programs. Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland, 95 p.
Burn HB, Elnur MAH (2002) Detection of hydrologic trends and variability. Journal of Hydrology 255: 107 -122.
Carrie MV (2011) Assessing the accuracy of passive microwave estimates of snow water equivalent in data- scarce regions for use in water resource applications. ERDC-CRREL TR-11-8.
Carrie MV and Jacobs J M (2011) Snowpack and runoff generation using AMSR-E passive microwave observations in the Upper Helmand Watershed, Afghanistan. Remote Sensing of Environment (115): 3313–3321.
Fadil A, Rhinane H, Kaoukaya A, Kharchaf Y and Alami Bachir O (2011) Hydrologic modeling of the Bouregreg watershed (Morocco) using GIS and SWAT model. Journal of Geographic Information System. 3: 279-289.
Harris I, Jones PD, Osborn TJ and Lister DH (2014) Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 dataset. International Journal of Climatology 34(3):623-642
Kendall MG (1975) Rank correlation methods. Griffin, London, UK.
Kahya E, Kalayci S (2004) Trend analysis of streamflow in Turkey. Journal of Hydrology, 289: 128-144.
Mann HB (1945) Nonparametric tests against trend, Econometrica. 13:245-259.
BITEW M M, GEBREMICHAEL M, GHEBREMICHAEL  L T, BAYISSA  Y. A(2011) Evaluation of high-resolution satellite rainfall products through streamflow simulation in a hydrological modeling of a small mountainous watershed in Ethiopia. Hydrometer 13:338-350
Vu M. T,  Raghavan S. V, Liong S. Y. 2012. SWAT use of gridded observations for simulating runoff – a Vietnam river basin study. Hydrol. Earth Syst. Sci. 16: 2801–2811.
Mitchell TD and Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology 25: 693-712. 
Najafi A, Vatanfada J(2011) Environmental challenges in trans-boundary waters, case study: Hamoon Hirmand Wetland (Iran and Afghanistan). International Journal of Water Resources and Arid Environments 1(1): 16-24.
New M, Lister D, Hulme M and Makin I (2002) A high-resolution data set of surface climate over global land areas. Climate Research 21(1)1-25.
Neitsch SL, Arnold JG, Kiniry JR and Williams JR (2009) Soil and Water Assessment Tool. Teoretical Documentation. NCDC (2010) Climatology for Southwest Asia. National Climatic Data Center.
Rossi CG, Srinivasan R, Jirayoot K, Le Duc T, Souvannabouth P, Binh N and Gassman PW (2009) Hydrologic evaluation of the lower Mekong River Basin with the Soil and Water Assessment Tool model. International Agricultural Engineering Journal. 18(1-2):1-13.
Schuol J, Abbaspour KC (2007) Using monthly weather statistics to generate daily data in a SWAT model application to West Africa. Journal of ecological modelling 201(3-4): 301–311
Schuol J, Abbaspour KC, Yang H, Srinivasan R, Alexander J and Zehnder B (2008). Modeling blue and green water availability in Africa. Journal of Water Resources Research, 44, W07406, doi:10.1029/2007WR006609.
USACE (2007) Water balance and regulation alternative analysis for Kajakai Reservoir using HEC-ResSim. PR-63, U.S. Army Corps of Engineers.
Williams-Sether T (2008) Streamflow characteristics of streams in the Helmand Basin, Afghanistan. Data Series 333, U.S. Geological Survey.
Watershed Atlas of Afghanistan (2004), Raphy Favre, Watershed Consultant Golam Monowar Kamal, AIMS Field Coordinator, January 2004, Kabul.
Yue S, Pilon P, Cavadias G (2002) Power of the Mann-Kendall and Spearman s rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology, 259: 254-271.
Zhao G, Hormann G (2010) Streamflow trends and climate variability impacts in Poyang Lake Basin, China. Water Resour Manage, 24: 689-706.