کاربرد مدل یکپارچه SWAT-MODFLOW جهت مدل‌سازی هم‌زمان آب‌های سطحی و زیرزمینی در راستای بهبود وضعیت سامانه منابع آبی در مقیاس حوضه ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد/ مهندسی منابع آب، گروه مهندسی آب، پردیس ابوریحان دانشگاه تهران.

2 دانشیار/ گروه مهندسی آب، پردیس ابوریحان دانشگاه تهران

3 استاد/ گروه مهندسی آب، پردیس ابوریحان دانشگاه تهران.

چکیده

به‌منظور مدیریت پایدار آب در حوضه آبریز درک کامل از شرایط هیدرولوژیکی و تبادلات آب‌های سطحی و زیرزمینی، از اهمیت خاصی برخوردار است. در این مقاله از مدل اصلاح شده SWAT-MODFLOW که یک مدل هیدرولوژیکی چندمنظوره و یکپارچه است، جهت شبیه‌سازی کمی فرآیندهای آب سطحی و زیرزمینی و تبادلات هم‌زمان بین آنها در سطح حوضه آبریز شازند، استفاده شده است. پس از واسنجی مدل ترکیبی، نتایج واسنجی مدل آب سطحی SWAT برای ایستگاه هیدرومتری پل دوآب واقع در رودخانه شراء و خروجی حوضه، مقدار ضریب R2 و نش ساتکلیفت به ترتیب 0/64 و 0/63 را نشان می‌دهد. در بخش آب زیرزمینی میزان RMSE برای 19 چاه مشاهده‌ای در آبخوان 1/72 متر به دست آمد که در سطح قابل قبولی قرار دارد. با توجه نتایج حاصل‌شده در دو بخش آب سطحی و زیرزمینی عملکرد مدل با توجه به یکپارچگی و در نظر گرفتن تمامی تبادلات دو مدل به‌صورت هم‌زمان و در یک منطقه وسیع قابل‌قبول بوده است. به جهت ارزیابی کاربرد مدل یکپارچه SWAT-MODFLOW در سطح حوضه نیز از مدل مذکور جهت برآورد تأثیر سناریوی کاهش برداشت به میزان 10 درصد از منابع آبی با استفاده از یک شاخص بر روی سامانه منابع آبی موجود، استفاده گردید که نتایج به‌دست‌آمده از شاخص آب در دسترس WAI، استفاده‌شده در این مطالعه، بیان‌گر بهبود در مقدار شاخص مذکور و درنتیجه بهبود وضعیت سامانه منابع آبی در مقایسه با وضع موجود بود.

کلیدواژه‌ها


عنوان مقاله [English]

Application of SWAT-MODFLOW Integrated Model for Simultaneous Modeling of Surface and Groundwater to Improve Basin-Scale Water Resources System Status

نویسندگان [English]

  • Sajjad Naeb 1
  • Saman Javadi 2
  • Mohammad Ebrahim Banihabib 3
1 M.Sc. Graduate of Water Resources Engineering, Department of Water Engineering, College of Abourayhan, University of Tehran. Iran.
2 Associate Professor, Department of Water Engineering, College of Abourayhan, University of Tehran. Iran. Email: Javadis@ut.ac.ir
3 Professor, Department of Water Engineering, College of Abourayhan, University of Tehran. Iran.
چکیده [English]

In order to ensure sustainable water management, a thorough understanding of the hydrological conditions and the interactions between surface and ground water. In this paper used from corrected multifunctional and integrated hydrologic model SWAT-MODFLOW to simulation quantitative processes of surface and ground water and simultaneous exchanges between them at the Shazand catchment. After the calibration, results of calibration SWAT surface water model to Duab bridge hydrometrical station that located at the Shara river and the basin's output, shown coefficient value of R2 and Nash-Sutcliff 0.64 and 0.63, respectively. At the groundwater part, the amount of RMSE for 19 observational wells calculated 1.72 m that is an acceptable level. With regard to the results obtained in the two surface and ground water sections, the performance of the model with regard to the integrity and consideration of all exchanges of the two models is concurrently and in a wide area acceptable and can recommended use from integrated SWAT-MODFLOW model In integrated simulation of the hydrological conditions of the catchment in a comprehensive manner. To evaluate the application of SWAT-MODFLOW integrated model at the basin level, the model was used to estimate the impact of a 10% reduction in water resources scenario using an index on the existing water resources system, the results obtained from the water index. The availability of WAI used in this study indicates an improvement in the value of the indicator and thus an improvement in the status of the water resources system compared to the status quo.

کلیدواژه‌ها [English]

  • Integrated Modeling
  • SWATMODFLOW Model
  • SWAT
  • MODFLOW
  • Water budget
  • Aliyari F, Bailey RT, Tasdighi A, Dozier A, Arabi M, and Zeiler K (2019) Coupled SWAT-MODFLOW model for large-scale mixed agro-urban river basins. Environmental Modelling and Software 115:200-210

    Arnold JG, Srinivasan R, Muttiah RS, and Williams JR (1998) Large area hydrologic modeling and assessment part I: Model development. Journal of the American Water Resources Association 34(1):73-89

    Arnold JG, Williams JR, and Maidment DR (1995) Continuous-time water and sediment-routing model for large basins. Journal of Hydraulic Engineering 121(2):171-183

    ASCE Task Committee (1993) Criteria for evaluation of watershed models. Journal of Irrigation and Drainage Engineering

    Bailey R, Rathjens H, Bieger K, Chaubey I, and Arnold J (2017) SWATMOD-Prep: Graphical user interface for preparing coupled SWAT-MODFLOW simulations. Journal of the American Water Resources Association

    Bailey RT, Wible TC, Arabi M, Records RM, and Ditty J (2016) Assessing regional-scale spatio-temporal patterns of groundwater–surface water interactions using a coupled SWAT-MODFLOW model. Hydrological Processes 30(23):4420–4433 

    Bergström S (1992) The HBV model - its structure and applications. Swedish Meteorological and Hydrological Institute Reports Hydrology

    Burnash R, Ferral R, and McGuire R (1974) A generalized streamflow simulation system - conceptual modeling for digital computers. Mathematical Models in Hydrology

    Moriasi D N, Arnold J G, Van Liew M W, Bingner R L, Harmel R D, and Veith T L (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50(3):885-900

    Diodato DM (2000) Software spotlight. Ground Water, John Wiley & Sons, Ltd (10.1111) 38(5):649-650

    Eini M, Javadi S, Delavar M (2019) Development of comprehensive karstic watershed model in order to make estimates and precision for the components of the water balance. Iran-Water Resources Research (In Persian)‎ 145:125-136

    Eini M, Javadi S, Delavar M (2018) Evaluating the performance of CRU and NCEP CFSR global reanalysis climate datasets in hydrological simulation by SWAT model (Case study: Maharlu Basin). Iran-Water Resources Research (In Persian)‎ 141:32-44

    Fleckenstein JH, Krause S, Hannah DM, and Boano F (2010) Groundwater-surface water interactions: New methods and models to improve understanding of processes and dynamics. Advances in Water Resources 33(11):1291–1295

    Guzman JA, Moriasi DN, Gowda PH, Steiner JL, Starks PJ, Arnold JG, and Srinivasan R (2015) A model integration framework for linking SWAT and MODFLOW. Environmental Modelling and Software, Elsevier Ltd 73:103-116

    Harbaugh A W (2005) MODFLOW-2005, The U . S. Geological Survey Modular Ground-Water Model-the Ground-Water Flow Process. U.S. Geological Survey Techniques and Methods 253

    HydroGeoLogic I (2006) MODHMS: A comprehensive MODFLOW-based hydrologic modeling system, Ver. 3.0, Documentation and Users Guide. Available at: https://scholar.google.com/scholar_lookup?title=MODHMS%3A A Comprehensive MODFLOW-Based Hydrologic Modeling System%2C Ver. 3.0%2C Documentation and Users Guide&author=HydroGeoLogic%2C Inc (HGL)&publication_year=2006

    Jackson C R (2001) The development and validation of the object-oriented quasi three-dimensional regional groundwater flow model ZOOMQ3D., 57. British Geological Survey, 57pp

    Jha MK, Gassman PW, and Arnold JG (2006) Water quality modeling for the raccoon river watershed using SWAT. Transactions of the ASABE 50(2):479-493

    Kim NW, Chung IM, Won YS, and Arnold JG (2008) Development and application of the integrated SWAT-MODFLOW model. Journal of Hydrology, DOI:10.1016/j.jhydrol.2008.02.024

     

    Liang X, Lettenmaier DP, Wood EF, and Burges SJ (1994) A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research 99(D7)

    Markstrom SL, Niswonger RG, Regan RS, Prudic DE, and Barlow PM (2008) GSFLOW-coupled ground-water and surface-water flow model based on the integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005). Geological Survey (US)

    Maxwell R M, Kollet S J, Smith S G, Woodward C S, Falgout R D, Ferguson I M,... Ashby S (2016) ParFlow user’s manual. Integrated Groundwater Modeling Center Report GWMI 2016-01

    Meigh J R, McKenzie A A, Sene K J (1999) A grid-based approach to water scarcity estimates for eastern and southern Africa. Water Resources Management 13(2):85-115

    Niswonger R G, Panday S, Ibaraki M (2011) MODFLOW-NWT, A Newton Formulation for MODFLOW-2005. Ground Water- Modeling Techniques

    Paniconi C and Wood EF (1993) A detailed model for simulation of catchment scale subsurface hydrologic processes. Water Resources Research 29(6):1601-1620

    Refsgaard J C, Storm B, and Singh V P (1995) MIKESHE, Computer Models of Watershed Hydrology.Water Resources Publications, Colorado, USA.Water Resources Publications, 806-846

    Schulla J and Jasper K (2007) Model description WASIM-ETH (Water balance simulation model ETH). Institute for Atmospheric and Climate Science, Zürich, 181

    Sophocleous M (2002) Interactions between groundwater and surface water: The state of the science. Hydrogeology Journal 10(1):52-67

    Sophocleous MA, Koelliker JK, Govindaraju RS, Birdie T, Ramireddygari SR, and Perkins SP (1999) Integrated numerical modeling for basin-wide water management: The case of the Rattlesnake Creek basin in south-central Kansas. Journal of Hydrology 214(1-4):179-196

    Sutanudjaja EH, Van Beek LPH, De Jong SM, an Geer FC, and Bierkens MFP (2014) Calibrating a large-extent high-resolution coupled groundwater-land surface model using soil moisture and discharge data. Water Resources Research 50(1):687-705

    Therrien R, McLaren RG, Sudicky EA, and Panday SM (2010) HydroGeoSphere, A three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport. Groundwater Simulations Group

    Thode R and Fredlund M (2013) 2D/3D Seepage Modeling Software (SVFLUX) Tutorial Manual. SoilVision Systems Ltd., Saskatoon, Saskatchewan, Canada

    United Nations (2014) World population ageing. Department of Economic & Social Affairs Population Division

    US Army Corps of Engineers (2015) HEC-HMS hydrologic modeling system. User’s Manual - Version 4.1 - CPD-74A

    • VanderKwaak JE and Loague K (2001) Hydrologic-response simulations for the R-5 catchment with a comprehensive physics-based model. Water Resources Research 37(4):999-1014

    Zyvoloski G A, Robinson B A, Dash Z V, Kelkar S, Viswanathan H S, Pawar R J, ... and Chu S (2011) Software Users Manual (UM) for the FEHM Application Version 3.1-3. X. Los Alamos National Laboratory, Los Alamos