بررسی دو متغیره تأثیر تغییر اقلیم بر خشکسالی با شاخص SPEI و توابع مفصل (مطالعه موردی: دوگنبدان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار/ دانشکده مهندسی عمران، دانشگاه یزد، ایران.

2 دانش آموخته کارشناسی ارشد آب و سازه‌های هیدرولیکی/ گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه آیت الله العظمی بروجردی (ره)، ایران.

3 دانشجوی دکتری آب و سازه‌های هیدرولیکی/ دانشکده مهندسی عمران، دانشگاه یزد، ایران.

چکیده

خشکسالی‌های متأثر از تغییر اقلیم از جمله مخرب‌ترین رویدادهای آب و هوایی هستند که باعث خسارت‌های قابل توجهی هم در بخش منابع طبیعی و هم در زندگی انسان‌ها می‌شوند. در تحقیق حاضر بمنظور بررسی اثر تغییر اقلیم بر خشکسالی، بارش و دمای آینده (2030-2050) ایستگاه دوگنبدان شهرستان گچساران، با مدل CanESM2 تحت سناریو RCP8.5 محاسبه شد. سپس با استفاده از شاخص بارش-تبخیر و تعرق استاندارد شده (SPEI) در دوره پایه (2005-1985) و آتی در سری‌های زمانی مختلف خشکسالی ارزیابی شد. درنهایت متغیرهای شدت و مدت خشکسالی برای محاسبه احتمال و دوره بازگشت توأم، با تابع چند متغیره کاپولا تحلیل شد. نتایج نشان داد متغیرهای دمای ماهانه تحت سناریو RCP8.5 2/2 درجه سانتیگراد افزایش و بارش 5/5 درصد کاهش یافته است. نتایج ارزیابی خشکسالی نشان می‌دهد تعداد دوره‌های خشک و مرطوب با افزایش طول مقیاس کمتر می‌شوند، اما مدت زمان طولانی‌ترین دوره افزایش می‌یابد. همچنین تعداد دوره‌های خشکسالی تحت سناریوی RCP8.5 نسبت به دوره پایه افزایش خواهد یافت. تابع فرانک با مقادیر متوسط سه شاخص ارزیابی نیکویی برازش RMSE (0/38)، NSE (0/9) و AIC (-101/9) بعنوان بهترین تابع برازش داده شده در هر دو دوره انتخاب گردید. نتایج تحلیل توأم دوره بازگشت یک رویداد خشکسالی با میزان سختی 10 و مدت 10 ماهه برای دوره پایه و RCP8.5 بترتیب 5 و 4 سال می‌باشد که نشان دهنده کاهش دوره بازگشت خشکسالی‌های شدید و افزایش آن‌ها در آینده تحت سناریو RCP8.5 نسبت به دوره پایه است.

کلیدواژه‌ها


عنوان مقاله [English]

Bivariate Analysis of the Impact of Climate Change on Drought with SPEI Index and Coppola Functions (Case Study: Dugonbadan)

نویسندگان [English]

  • Mohammadreza Goodarzi 1
  • Atiyeh Fatehifar 2
  • Fatemeh Avazpoor 3
1 Assistant Professor, Faculty of Civil Engineering, Yazd University, Iran.
2 M.Sc. Graduate of Water and Hydraulic Structures, Department of Civil Engineering, Faculty of Engineering, Ayatollah Ozma Borujerdi University, Iran.
3 PHD student of Water and Hydraulic Structures, Faculty of Civil Engineering, Yazd University, Iran.
چکیده [English]

Droughts affected by climate change are among the most devastating weather events, causing significant damage both in natural resources and in human life. In this study, in order to investigate the effect of climate change on drought, both precipitation and temperature future period (2030-2050) were calculated with CanESM2 model under RCP8.5 scenario in the Douganbodan station in Gachsaran city. Then, drought was evaluated with Standardized Precipitation-Evapotranspiration Index (SPEI) during the base (1985-2005) and future periods in different time series. Finally, severity and duration variables of drought were analyzed for the calculation of joint probability and return period with the multivariate copula function. The results show that monthly temperature under RCP8.5 scenario has increased by 2.2°C and precipitation has been reduced by 5.5%. Drought evaluation results show that the number of dry and wet periods is reduced by increasing the length of the scale, but the longest period increases. Also, the number of drought periods relative to the base period have increased under the RCP8.5 scenario. The Frank function was selected as the best fitted function with the mean values of the three fitting indicators, RMSE (0.38), NSE (0.9) and AIC (-101.9). The results of analysis of joint return period of a drought event with a severity of 10 and duration of 10 months for the base period and RCP8.5, respectively, were 5 and 4 years, that indicate a decrease in the return period of severe drought and their increase in future under RCP8.5 scenario relative to the base period.

کلیدواژه‌ها [English]

  • climate change
  • Drought
  • Joint Probability
  • Return period
  • Severity-Duration
Abdul Hosseini M, Eslamian S, Musavi SF (2010) Analysis of variation of drought socio-economic characteristics and the effect of climate change. First National Conference on Meteorology and Water Management Tehran (NCAGM01), 22–23 November, Iran, 1–10 (In Persian)
AghaKouchak A, Cheng L, Mazdiyasni O, Farahmand A (2014) Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought. Geophysical Research Letters 41(24):8847–8852
Akaike H (1998) Information theory and an extension of the maximum likelihood principle. Selected Papers of Hirotugu Akaike, Springer, New York, NY, 434p
Ayantobo O O, Li Y, Song S, Jave T, Yao N (2018) Probabilistic modelling of drought events in China via 2-dimensional joint copula. Journal of hydrology 559:373–391
Azizabadi M, Bakhtiari B, Qaderi K, Rezapour M (2016) The survey of climate change impact on drought severity- duration- frequency curves using copulas. Iranian Journal of Soil and Water Research 47(4):743–754 (In Persian)
Blekinsop B, Fowler H J (2007) Changes in drought frequency, severity and duration for the British Isles projected by the PRUDENCE regional climate models. Journal of Hydrology 342(1–2):50–71
Burke E J, Brown S J, Christidis N (2006) Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model. Journal of Hydrometeorology 7(5):1113–1125
Chylek P, Li J, Dubey M. K, Wang M, Lesins G (2011) Observed and model simulated 20th century Arctic temperature variability: Canadian Earth System Model CanESM2. Atmospheric Chemistry and Physics Discussions 11(8):22893–22907
Edwards D C, McKee T B (1997) Characteristics of 20th century drought in the United States at multiple time scales. Climatology Report No. 97-2, Colorado State University, 172p
Ekanayake E, Perera K (2014) Analysis of drought severity and duration using copulas in anuradhapura, Sri Lanka. International Journal of Environment and Climate Change 4(3):312–327
Golmohammadi M, Massah Bavani A (2011) The perusal of climate change impact on drought intensity and duration. Journal of Water and Soil 25(2):315–326 (In Persian)
IPCC (2014) Climate change 2014 impacts, adaptation and vulnerability: global and sectoral aspects. Cambridge University Press, 1820p
Jones P D, Lister D H, Osborn T J, Harpham C, Salmon M, Morice C P (2012) Hemispheric and large‐scale land‐surface air temperature variations: an extensive revision and an update to 2010. Journal of Geophysical Research: Atmospheres 117(D5):1–29
Jones P D, Hulme M (1996) Calculating regional climatic times series for temperature and precipitation: methods and illustrations. International Journal of Climatology 16(4):361–377
Kaboosi K, Kordjazi M (2017) The effect of climate change on meteorological parameters and drought in Golestan province. Iran Water Resources Research 13(3):205–213 (In Persian)
Karmakar S, Simonovic S P (2009) Bivariate food frequency analysis. Part 2: a copula-based approach with mixed marginal distributions. Journal of Flood Risk Management 2(1):32–44
Meinshausen M, Smith S J, Calvin K, Daniel J S, Kainuma M L T, Lamarque J F, Matsumoto K, Montzka S A, Raper S C B, Riahi K, Thomson A, Velders G J M, Van Vuuren D P P (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109(1-2):213–241
Mishra A k, Singh V P, Desai V R (2009) Drought characterization: a probabilistic approach. Stochastic Environ Research Risk Assess 23(1):41–55
Mousavi Nadoushani S, Alimohammadi S, Ahani A, Behrouz M, Mousavi M (2018) Bivariate drought frequency analysis in Gharesoo-Gorganrud basin by using copulas. Journal of Water and Soil conservation 24(4):71–91 (In Persian)
Norozi E, Rostami N, Jahangir M H (2018) Prediction of drought condition during 2018-2037 period under climate change approach (Case study: Ilam and Dehloran stations). Iranian Journal of Ecohydrology 5(3):977–991(In Persian)
Philip GO, Babatunde JA, Gunner L (2017) Impacts of climate change on hydro-meteorological drought over the Volta basin, west Africa. Global and Planetary Change 155(1):121–132
Rezaei M, Nohtani M, Moghaddamnia A, Abkar A, Rezaei M (2014) Performance evaluation of statistical downscaling model (SDSM) in forecasting precipitation in two arid and hyper arid regions. Journal of Water and Soil 28(4):836–845 (In Persian)
Sadegh M, Ragno E, AghaKouchak A (2017) Multivariate copula analysis toolbox (MvCAT): describing dependence and underlying uncertainty using a Bayesian framework. Water Resources Research 53(6):5166–5183
Saeidipour M, Radmanesh F, Eslamian S (2019) Meteorological drought monitoring using the multivariate index of SPEI (case study: Karun basin).  AUT Journal of Civil Engineering 3(1):85–92
Sheffield J, Wood E F (2008) Projected changes in drought occurrence under future global warming from multi–model, multi-scenario, IPCC AR4 simulations. Climate Dynamics 31(1):79–105
Shiau J.T (2003) Return period of bivariate distributed hydrological events. Stochastic Environmental Research and Risk Assessment 17(1–2):42–57
Sklar A (1959) Fonctions de repartition à n dimensions et leurs marges. Publication of the Institute of Statistics, University of Paris 8:229–231
Sun C X, Huang G H, Fan Y, Zhou X, Lu C, Wang X Q (2019) Drought occurring with hot extremes: changes under future climate change on Loess Plateau, China. Earth's Future 7(6):587–604
Van Pelt S C, Swart R J (2011) Climate change risk management in transnational river basin: the Rhine. Water Resource Management 25(1):3837–3861
Vicente Serrano S M, Beguería S, López Moreno J I (2010) A multi–scalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate 23(7):1696–1718
Vidal J P, Wade S (2009) A multi model assessment of future climatological droughts in the United Kingdom. International Journal of Climatology 29(14):2056–2071
Wilby R L, Harris I (2006) A frame woke for assessing uncertainties in climate change impact: low flow scenarios for the river Thames. UK Water Resources Research 42(2):1–10