برآورد دبی در مقاطع مرکب مستقیم بر اساس زبری معادل با استفاده از الگوریتم فرا ابتکاری ازدحام ذرات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار/ دانشکده مهندسی،گروه مهندسی عمران، دانشگاه زنجان، زنجان.

2 دانشجوی کارشناسی ارشد/ مهندسی آب و سازه های هیدرولیکی دانشگاه زنجان، زنجان.

چکیده

جهت برآورد شدت‌جریان عبوری از مقاطع مرکب مستقیم، تاکنون روابط متعددی ارائه شده است. اکثر روابط در شرایط آزمایشگاهی نتایج خوبی دارند اما دقت آن‌ها برای داده‌های میدانی چندان قابل استناد نیست. در پژوهش حاضر با استفاده از الگوریتم فرا ابتکاری ازدحام ذرات و با به کار بردن داده‌های آزمایشگاهی و میدانی با مقطع مرکب، رابطه جدیدی جهت برآورد دبی کل عبوری از مقطع مرکب پیشنهاد شد. در رابطه جدید پیشنهادشده، جهت برآورد ضریب زبری معادل مقاطع مرکب علاوه بر در نظر گرفتن عمق نسبی، عرض نسبی، شعاع هیدرولیکی نسبی و زبری نسبی (نسبت پارامترهای ذکرشده در دشت‌های سیلابی به مقطع اصلی) از تعریف جدیدی از عدد رینولدز استفاده گردید. نتایج نشان داد رابطه‌ی پیشنهادی با میانگین قدر مطلق خطای نسبی 4/10 درصد قابلیت مناسبی در برآورد دبی مقاطع مرکب دارد، به‌طوری‌که میزان خطای مذکور نسبت به روش‌های بررسی ‌شده پژوهشگران پیشین، به‌طور میانگین در حدود 38 درصد بهبود یافته است.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of Discharge in Straight Compound Channels Based on The Equivalent Roughness Using The Particle Swarm Optimization Algorithm

نویسندگان [English]

  • Mahboobeh Rajabi 1
  • Jalal Bazargan 2
1 Associate Professor, Department of Civil Engineering, University of Zanjan, Zanjan, Iran
2 Post Graduate Student of Hydraulic Structures, Department of Civil Engineering, University of Zanjan, Zanjan, Iran
چکیده [English]

Several relations have been presented to estimate the flow discharge passing the straight compound channels, most of which result in acceptable results in the experimental conditions, but are not accurate enough to be sued in the case of the field studies. In the present study, the Particle Swarm Optimization Algorithm was used to analyze the experimental and field data of the compound cross sections and a new relation was presented to estimate the total discharge passing the compound cross section. In the new suggested relation, in order to estimate the equivalent roughness coefficient of the compound cross sections, in addition to the relative depth, relative width, relative hydraulic radius and relative roughness (the ratio of the mentioned parameters in the floodplains to the main cross section), a new definition of the Reynolds number was used. The results showed that the proposed relation, with an average absolute relative error of 10.4, could properly estimate the discharge in the compound cross sections so that the average absolute relative error decreased by about 38 percent in comparison to the previous studies performed by other researchers.

کلیدواژه‌ها [English]

  • particle swarm optimization algorithm (PSO)
  • Equivalent Roughness
  • compound cross section
  • Flow discharge
Ackers P (1992) Hydraulic design of two-stage channels. Journal of Water and Maritime Engineering 96:247-257
Asgari A Mohammadi M Manafpur M (2011) Flow discharge and energy grade-line in compound channels. Water and Soil Science 21(1) (In Persian)
Atabay S, Knight DW (2006) 1-D Modelling of conveyance boundary shear and sediment transport in overbank flow. Journal of Hydraulic Research 44(6):739-754
Al-Khatib, IA Dweik AA, Gogus M (2012) Evaluation of separate channel methods for discharge computation in asymmetric compound channels. Flow Measurement and Instrumentation 24:19-25
Azamathulla HM, Zahiri A (2012) Flow discharge prediction in compound channels using linear genetic programming. Journal of Hydrology 454:203-207
Blalock ME, Sturm TW (1981) Minimum specific energy in compound open channel. Journal of the Hydraulics Division 107(6):699-717
Bousmar D, Zech Y (1999) Momentum transfer for practical flow computation in compound channels. Journal of Hydraulic Engineering 125(7):696-706
Bousmar D, Wilkin N, Jacquemart JH, Zech Y (2004) Overbank flow in symmetrically narrowing floodplains. Journal of Hydraulic Engineering 130(4):305-312
Clerc M, Kennedy J (2002) The particle swarm-explosion stability and convergence in a multidimensional complex space. IEEE transactions on Evolutionary Computation 6(1):58-73
Cox RG (1973) Effective hydraulic roughness for channels having bed roughness different from bank roughness: A State of the Art Report (No. AEWES-Misc-Paper-H-73-2). Army Engineer Waterways Experiment Station Vicksburg
Das BS, Devi K, Khatua KK (2019) Prediction of discharge in converging and diverging compound channel by gene expression programming. ISH Journal of Hydraulic Engineering 1-11
Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In MHS'95 Proceedings of the Sixth International Symposium on Micro Machine and Human Science (pp. 39-43)
Einstein HA (1934) Der hydraulische oder profil-radius. Schweizerische Bauzeitung 103(8):89-91
Ervine DA, Babaeyan-Koopaei K, Sellin RH (2000) Two-dimensional solution for straight and meandering overbank flows. Journal of Hydraulic Engineering, 126(9):653-669
Haidera MA, Valentine EM (2002) A practical method for predicting the total discharge in mobile and rigid boundary compound channels. RiverFlow 153-160
Hosseini SM (2004) Equations for discharge calculation in compound channels having homogeneous roughness. Iranian Journal of Science & Technology 28(B5):537-546
Horton RE (1933) Separate roughness coefficients for channel bottom and sides. Engineering News Record 111(22):652-653
Huthoff F, Roos PC, Augustijn DC, Hulscher SJ (2008) Interacting divided channel method for compound channel flow. Journal of Hydraulic Engineering 134(8):1158-1165
Knight DW, Demetriou JD (1983) Flood plain and main channel flow interaction. Journal of Hydraulic Engineering 109(8):1073-1092
Knight DW, Sellin RHJ (1987) The SERC flood channel facility. Water and Environment Journal 1(2):198-204
Knight DW Shiono K Pirt J (1989) Prediction of depth mean velocity and discharge in natural rivers with overbank flow. In Proceedings of the International Conference on Hydraulic and Environmental Modellling of Coastal Estuarine and River Waters 419-428 Gower Publishing
Lambert M F, Myers WR (1998) Estimating the discharge capacity in straight compound channels. Proceedings of the Institution of Civil Engineers-Water Maritime and Energy 130(2):84-94
Liu W, James CS (2000) Estimation of discharge capacity in meandering compound channels using artificial neural networks. Canadian Journal of Civil Engineering 27(2):297-308
Myers RC, Lyness JF (1997) Discharge ratios in smooth and rough compound channels. Journal of Hydraulic Engineering 123(3):182-188
Martin L A, Myers WRC (1991) Measurement of overbank flow in a compound river channel. Proceedings of the Institution of Civil Engineers 91(4):645-657
Najafian Sh, Younesi H, Parsaei A, Torabi-Poudeh H (2017) Physical and numerical modeling of flow properties in prismatic compound open channel with heterogeneous roughness. Irrigation and Drainage Structures Engineering Research 18 (68):1-16 (In Persian)
Parsaie A, Najafian S, Yonesi H (2016) Flow discharge estimation in compound open channel using theoretical approaches. Sustainable Water Resources Management 2(4):359-367
Parsaie A,  Yonesi H A,  Najafian S (2015) Predictive modeling of discharge in compound open channel by support vector machine technique. Modeling Earth Systems and Environment 1(1-2)
Pavlovskii NN (1931) K voporosu o raschetnoi dlia ravnomernogo dvizheniia v vodotokahk s neodnorodnymi stenkami. Izvestiia Vsesoiuznogo Nauchno-Issledovatel’skogo Instituta Gidrotekhniki Trans All-Union Sci Res Inst Hydraulic Eng Leningrad 3:157-164
Parsaie A Haghiabi A (2015) The effect of predicting discharge coefficient by neural network on increasing the numerical modeling accuracy of flow over side weir. Water Resources Management 29(4):973-985
Sahu M (2011) Prediction of flow and its resistance in compound open channel. Master of Technology In Civil Engineering University of Rorkela
Sahu M, Khatua KK, Mahapatra SS (2011) A neural network approach for prediction of discharge in straight compound open channel flow. Flow Measurement and Instrumentation 22(5):438-446
Sahu M, Mahapatra SS, Biswal KC, Khatua KK (2014) Prediction of flow resistance in a compound open channel. Journal of Hydroinformatics 16(1):19-32
Tarrab L, Weber JF (2004) Transverse mixing coefficient prediction in natural channels. Computational Mechanics 13:1343-1355
Wormleaton PR and Merrett DJ (1990) An improved method of calculation for steady uniform flow in prismatic main channel/flood plain sections. Journal of Hydraulic Research 28(2):157-174
Yang K, Cao S, Liu X (2005) Study on resistance coefficient in compound channels. Acta Mechanica Sinica 21(4):353-361
Yen BC (1992) Hydraulic resistance in open channels. Channel flow resistance-Centennial of Manning's Formula 1-135
Zahiri A, Shabani MA (2018) Modeling of stage-discharge relationship in compound channels using multi-stage gene expression programming. Eco hydrology 5(1):37-48 (In Persian)
Zahiri A, Dehghani AA (2009) Flow discharge determination in straight compound channels using ANN. World Academy of Science Engineering and Technology 58:12-15
Zahiri A, Azamathulla HM (2014) Comparison between linear genetic programming and M5 tree models to predict flow discharge in compound channels. Neural Computing and Applications 24(2):413-420