تاثیر توابع کرنل بر شاخص خشکسالی ‏SPEI‏ و مشخصه‌های خشکسالی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری/ گروه مهندسی آب دانشگاه بین المللی خمینی، قزوین

2 استاد/ گروه مهندسی آب دانشگاه بین المللی امام خمینی، قزوین

چکیده

برنامه‌ریزی و مدیریت خشکسالی مبتنی بر شناخت خشکسالی، مشخصه‌های آن و گستردگی مکانی و زمانی آن است. ‏در تحقیق حاضر شاخص بارش و تبخیر و تعرق استاندارد شده (‏SPEI‏) دوازده ماهه در دوازده ایستگاه قدیمی حوضه زاینده‌رود ‏با اعمال چهار کرنل شامل مستطیلی، مثلثی، دایره‌ای و گوسی با حداکثر وزن ماه پنجم برآورد گردید‌ و تاثیر کرنل‌ها بر مشخصه-‏های خشکسالی ارزیابی شد. نتایج بررسی سری زمانی شاخص ‏SPEI‏ در ارتباط با چهار مشخصه خشکسالی یعنی زمان رخداد، ‏تداوم، بزرگی و شدت خشکسالی حاکی از حساسیت بالاتر سایر کرنل‌ها نسبت به کرنل‌ مستطیلی در شناسایی خشکسالی بود. ‏کرنل مستطیلی دارای حداکثر ضریب تغییرات در هر تداوم خشکسالی است. کرنل گوسی در تداوم و بزرگی خشکسالی و کرنل ‏دایره‌ای در شدت خشکسالی کمترین ضریب تغییرات را بخود اختصاص دادند. همچنین کرنل گوسی در مقایسه با سایر توابع از ‏حساسیت بیشتری در آشکار سازی نوسانات خشکسالی برخوردار است و زودتر از سایر توابع علائم مواجهه با خشکسالی را آشکار ‏می‌سازد. در مجموع نتایج حاصل از این مطالعه نشان می‌دهد استفاده از اوزان یکسان و در واقع کرنل مستطیلی برای کلیه ‏ماههای مورد استفاده در تحلیل خشکسالی می‌تواند منجر به بیش یا کم برآوردی پارامترهای مختلف خشکسالی گردد.‏

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of Kernel Functions on SPEI and Drought Characteristics

نویسندگان [English]

  • Seyed Mojtaba Mousavi 1
  • Alireza Shokoohi 2
1 Ph.D. student of Water Engineering, Imam Khomeini International University, Qazvin, Iran
2 Professor, Department of Water Engineering, Khomeini International University, Qazvin, Iran
چکیده [English]

Drought management and planning are based on recognizing drought characteristics and its spatial and ‎temporal extent. In the present research, SPEI12 was calculated using 4 kernels including rectangular, ‎triangular, circular and Gaussian at the 12 Zayandeh Roud watershed’s climatological stations. Four ‎important characteristics of drought including the time of occurrence, duration, magnitude and severity ‎were evaluated by applying the highest weight to the 5th month. It was revealed that kernels other than ‎rectangular were more sensitive in recognizing the four drought characteristics. While the rectangular ‎kernel showed the highest coefficient of variation (CV) in drought duration, the Gaussian kernel has the ‎least CV in duration and magnitude and the circular kernel has the least CV in severity. Moreover, it was ‎found that the Gaussian kernel was more successful in detecting the occurrence of drought in comparison ‎with others. Finally, the results of this research indicated that rectangular kernel i.e. using equal weights ‎for all months in deriving SPEI, may lead to overestimate or underestimate drought characteristics.‎

کلیدواژه‌ها [English]

  • SPEI
  • Kernel function
  • Drought Duration
  • Drought magnitude
  • Drought Severity
Ahmadi M, Nosrati K and Salaki H (2013) Drought and its relationship with soil moisture (Case study: Isfahan KabotarAbad). Geography 11(38):77-91 (In Persian)
American Meteorological Society (AMS) (2004) Statement on meteorological drought. Bulletin of the American Meteorological Society 85:771-773
Beguer S, Vicente-Serrano SM, Reig F and Latorre B (2014) Standardized precipitation evapotranspiration index ( SPEI ) revisited: parameter fitting , evapotranspiration models , tools , datasets and drought monitoring. International Journal Of Climatology 34(2014):3001-3023
CRED: EM-DAT: The OFDA/CRED International Disaster Database (2011) Université catholique de Louvain,  Brussels, Belgium
Douglas JR, Clarke RT and Newton SG (1976) The use of likelihood functions to fit conceptual models with more than one dependent variable. Journal of Hydrology 29:181-198
Eslahi M, Sobhani B and Pourasghar F (2014) Studying and applying the standardized precipitation evapotranspiration index (Case study: Tabriz Meteorological Station). Journal of Climate Research 1393(19):23-38 (In Persian)
Faramarzi, M (2014) Hydrological modelling of Zayandeh Rud River Basin (Final Report). Isfahan University of Technology, Department of Natural Resources, 98 p
Greis N P and Wood EF (1981) Regional flood frequency estimation and network design. Water Resources Research 17:1167-1177
Guttman NB (1999) Accepting the standardized precipitation index: a calculation algorithm. Journal of the American Water Resources Association 35(2):311-322
Hayes MJ, Svoboda MD, Wilhite DA and Vanyarkho OV (1999) Monitoring the 1996 drought using the standardized precipitation index. Bulletin of the American Meteorological Society 80:429-438
Hoseini Abari SH (2001) Zayandehrud va Esfahan. Farhang Esfahan 21:14-21 (In Persian)
Hosking JRM and Wallis JR (1987) Correlation and dependence between annual maximum flood series. IBM Thomas J. Watson Research Division, Yorktown Heights, NY, 95 p
Hosking JRM and Wallis JR (1997) Regional frequency analysis: an approach based on L- Moments. Cambridge University Press, United States of America, 224p
Hosking JRM, Wallis JR and Wood EF (1985) Estimation of the generalized extreme-value distribution by the method of probability-weighted moments. Technometrics 27:251-261
‎ ‎Kroll CN and Voge RM (2002) Probability distribution Of low stream flow series in the United states. Journal of hydrologic Engineering 7(2):137-146
‎Kumar R and Chatterjee C (2005) Regional flood frequency analysis using L-moments for North Bahmaputra region of India. Journal of Hydrologic Engineering 10(1):1-7
‎Landwehr JM, Matalas NC, and Wallis JR (1979) Probability-weighted moments compared with some traditional techniques in estimating Gumbel parameters and quantiles. Water Resources Research 15:1055-1064
‎Mishra AK and Singh VP (2010) A review of drought concepts. Journal of Hydrology 391(1-2):202-216
Moradi Y, Said MABM and Abustan IB (2011) Drought impacts and vulnerability in Isfahan ‎province. World Academy of Science, Engineering and Technology 74(October):740-749, ‎Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-‎‎79953277756&partnerID=40&md5=f864300f1caba375e7edab7b1632cd42‎
Mostafazadeh R and Zabihi M (2016) Comparison of SPI and SPEI indices to meteorological drought assessment using R programming (Case study: Kurdistan Province). Journal of the Earth and Space Physics 42(3):633-643 (In Persian)
‎Nam WH, Hayes MJ, Wilhite DA, Tadesse T, Svoboda MD and Knutson CL. (2014) Drought management and policy based on risk assessment in the context of climate change. Magazine of the Korean Society of Agricultural Engineers 56(2):2-15 (In Korean)
Natale L and Todini E (1974) A constrained parameter estimation technique for linear models in hydrology. Publication No. 13, Institute of Hydraulics, University of Pavia, Pavia, Italy
Nazeri Tahrudi M, Khalili K, and Behmanesh J (2014) Evaluation of common statistical distribution functions and the calculation methods of their parameters for estimating the probability of hydrological drought events (Case study: west of Lake Urmia Basin Rivers). Water and Soil Science- University of Tabriz 25(3):155-168 (In Persian)
Nguyen VT (2006) On regional estimation of floods for ungaged sites. Asia Oceania Geosciences Society, McGill University,Singapore
Nicholls N (2004) The changing nature of Australian droughts. Climatic Change 63:323-336
Nosrati K (2015) Assessment of Standardized Precipitation Evapotranspiration Index (SPEI) for drought identification in different climates of Iran. Earth Sciences, Shahid Beheshti University 12(4):63-74 (In Persian)
Nosrati K, Mohseni Saravi M, and Shahbazi R (2014) Application and comparison of standardized precipitation and standardized precipitation evapotranspiration indices for evaluating meteorological drought condition of Tehran Province. Desert Management 3:77-90 (In Persian)
Potop V (2011) The application a new drought index- standardized precipitation evapotranspiration index in the Czech Republic. Mikroklima a Mezoklima Krajinnych Struktur a Antropogennnich Prostredi 2(2010):4.2
Quiring S (2009) Developing objective operational definitions for monitoring drought. Journal of Applied Meteorology and Climatology 48:1217-1229
‎Rebetez M, Mayer H, Dupont O, Schindler D, Gartner K, Kropp JP and Menzel A (2006) Heat and drought 2003 in Europe: A climate synthesis. Annals of Forest Science 63:569-577
Rossi G, Benedini M, Tsakiris G and Giakoumakis S (1992) On regional drought estimation and analysis‎. Water Resources Management 6:249-277
Sebghati M, Ahmadi Birgani H, and Moghaddam A (2016) The calculation of continuity and intensity of droughts using modified SPEI index (Case study: Tabriz and Urmia Cities). Environ. Water Eng. 2(2):188-195 (In Persian)
Ghabaei Soug M, Zare Abyaneh H, Mosaedi A (2017) Development of ADI, The Aggregate Drought Index, Based On Principle Component Analysis For Monitoring Agricultural Drought In Golestan Province, Iran. Iran-Water Resources Research 13(2):56-73
Singh VP (1998) Entropy-based parameter estimation in hydrology‎. Kluwer Academic Publishers, London, 367 p
Smakhtin VU (2001) Low flow hydrology: a review‎. Journal of Hydrology 240:147-186
Sorooshian S, Gupta VK and Fulton JL (1983) Evaluation of maximum likelihood parameter‏ ‏estimation techniques for conceptual rainfall-‎runof models: Influence of calibration data‏ ‏variability and length on model credibility‎. Water Resources Research 19(1):251-259
Torabi H and Bagheri FL (2010) Estimation of parameters for an extended generalized half logistic distribution based on ‎complete and censored data‎. Journal of the Iranian Statistical Society 9(2):171-195
Van Loon AF (2013) On the propagation of drought. How climate and catchment characteristics influence hydrological drought development and recovery. Ph.D thesis, Wageningen University
Vicente-serrano SM (2006) Differences in spatial patterns of drought on different time scales : an analysis of the Iberian Peninsula. Water Resources Management 20:37-60
Vicente-Serrano SM, Beguería S, and López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate 23(7):1696-1718
Wallis JR (1981) Risk and uncertainties in the evaluation of flood events for the design of hydraulic structures. In: Guggino E, Rossi G and Todini E (eds) Piene e Siccita. Catania, Italy: Fondazione Politecnica del Mediterraneo, 3-36
Wallis JR (1982) Hydrologic problems associated with oilshale development‎. In: Rinaldi S (ed) Environmental Systems and Management. Amsterdam: North Holland Publishing Co. 85-102
Wilhite DA and Glantz MH (1985) Understanding the drought phenomenon: the role of definitions‎. Water International 10:111-120
Wilhite DA, Svoboda MD, and Hayes MJ ‎ (2007) Understanding the complex impacts of drought: a key to enhancing drought mitigation and ‎preparedness‎. Water Resources Management 21:763-774
Wilhite DA, Svoboda MD, Hayes MJ (2007) Understanding the complex impacts of drought: a key to enhancing drought mitigation and preparedness. Water Resources Management 21:763-774
Yousefi M, Ansari H, Mosaedi A, and Samadi SZ (2016) Evaluation of correlation between SPI, RDI, and SPEI indices and precipitation and  evapotranspiration in some climate regions. In: 2nd National Congress on Iran’s Irrigation and Drainage (IAIDM-2016), 23-25 August Isfahan University if Technology, Isfahan, Iran, https://www.civilica.com/Paper-NCIID02-NCIID02_080.html (In Persian)
Zabihi M, Mostafazadeh R, and Sharari M (2017) Analysis of wet and dry spells intensity and duration using precipitation-based and evapotranspiration influenced indices. Journal of Watershed Management Research 8(15):125-136 (In Persian)
Zare Abyaneh H, Ghabaei Sough M, and Mosaedi A (2015) Drought monitoring based on Standardized Precipitation Evaoptranspiration Index (SPEI) under the effect of climate change. Journal of Water and Soil 29(2):374-392 (In Persian)