چشم‌انداز پایداری تامین نیازهای شرب و کشاورزی سد دوستی تحت سناریوهای تغییر اقلیم و بهره‌برداری از سد سلما

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی و مدیریت منابع آب/ دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران،

2 استادیار/ دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران، ایران

3 استادیار/ دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران، ایران.

4 دانشجوی دکترای مهندسی و مدیریت منابع آب/ دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران، ایران.

چکیده

برنامه‌ریزی صحیح منابع آب در حوضه‌هی مرزی به دلیل فقدان یا عدم دسترسی به اطلاعات هواشناسی و هیدرولوژی کشورهی همسیه با سختی‌ روبروست. در ین مقاله با تلفیق مدل هیدرولوژیکی SWAT و مدل برنامه‌ریزی منابع آب WEAP سعی شده است تا به بررسی اثر توسعه بالادست و همچنین تغییر اقلیم برکاهش منابع آب ورودی از حوضه مرزی هریرود به کشورهی یران و ترکمنستان صورت پذیرد. سال‌هی 1955 تا 1996 بری دوره صحت‌سنجی و از سال 1997-2016 بری واسنجی مدل SWAT قرار داده شد. عدد R2 و NS بترتیب 66/0 و 65/0 بری دوره صحت‌سنجی و 7/0 و 72/0 بری دوره واسنجی به‌دست آمد. اغلب مناطق حوضه آبریز سد دوستی با افزیش دما (در حدود 5/1 تا 8/3 درجه) و کاهش بارش به‌ویژه در مناطق کوهستانی بالادست مواجه خواهد بود. بر اساس نتیج به دست آمده در صورت بهره‌برداری از سد سلما و اعمال سناریو تغییر اقلیم RCP8.5 اطمینان‌پذیری حجمی و پیداری تامین آب کشاورزی کشورهی یران و ترکمنستان به کم‌تر از 3 درصد تقلیل می‌یابد. تغییر الگوی آب و هویی و احداث سد سلما تامین نیازهی زیست محیطی در پائین‌دست سد دوستی را با چالش جدی روبرو خواهد کرد. ین موضوع ضرورت برقراری دیپلماسی آب بین کشورهی یران، افغانستان و ترکمنستان را دوچندان می‌کند. در صورت ادامه روند فعلی جالشهای جدی اجتماعی در دشت سرخس ناشی از عدم امکان تامین آب ایجاد خواهد شد. همچنین برای تامین آب شرب مشهد می‌بایستی منابع تامین با اطمینان پذیری بیشتر شناسایی شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Sustainability Outlook of Domestic and Agricultural Demand of Dusti Dam Considering Climate change Scenarios and Impact of Salma Dam

نویسندگان [English]

  • Hasan Nazari Mejdar 1
  • Ali Moridi 2
  • Jafar Yazdi 3
  • Ahmad KhazaiePoul 4
1 MSC student, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran Iran,
2 Assistant Professor, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti UniversityTehran, Iran,
3 Assistant Professor, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran,
4 PhD student, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran,
چکیده [English]

The planning and management of water resources in the transboundary basin because of missing or lack of access to weather information and hydrology in the riparian countries is difficult. In this paper, by coupling the SWAT hydrologic model and WEAP water resource planning and management model, we have tried to study the effect of upstream development as well as climate change on water inputs from the Harirud Transboundary River to Iran and Turkmenistan. The years 1955 to 1996 considered for calibration and the period from 1997 to 2016 to validate the SWAT model. The R2 and NS numbers were 0.66 and 0.65 for the calibration period, 0.7, and 0.72 for the calibration period, respectively. Most areas of the Dusti basin will face a rise in temperature (about 1.5 to 3.8 degrees) and precipitation decline, especially in upstream mountainous areas. Based on the results of the operation of the Salma Dam and RCP 8.5 climate change scenario, the reliability and sustainability of agricultural water supply in Iran and Turkmenistan will be reduced to less than 3%. Changing the climate pattern will face the challenge of meeting the environmental needs of downstream of Dusti and Salma dams. This trouble reveals the necessity of hydro policy between the riparian countries. If the current condition continues in this way water shortage in Sarakhs become the main social challenge at the northeast of Iran.

کلیدواژه‌ها [English]

  • Dusti river basin
  • Transboundary river
  • Climate change
  • SWAT-WEAP coupling
Abbaspour KC, Johnson CA and van Genuchten MT (2004) Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone Journal 3(4):1340
Abbaspour KC, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J, Zobrist J and Srinivasan R (2007) Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology 333(2-4):413-430
Adgolign TB, Rao GVRS and Abbulu Y (2016) WEAP modeling of surface water resources allocation in Didessa Sub-Basin, West Ethiopia. Sustainable Water Resources Management 2(1):55-70
Adhikari U and Nejadhashemi AP (2016) Impacts of climate change on water resources in Malawi. Journal of Hydrologic Engineering, American Society of Civil Engineers 21(11):5016026
Alaei M (2011) Water recycling in Mashhad plain (Effluent management: opportunities and threats). ICID 21st International Congress on Irrigation and Drainage, 15-25
Arnold JG, Srinivasan R, Muttiah RS and Williams JR (1998) Large area hydrologic modeling and assesment Part I: Model development. JAWRA Journal of the American Water Resources Association 34(1):73-89
Ashraf Vaghefi S, Abbaspour K, Faramarzi M, Srinivasan R, and Arnold J (2017a) Modeling crop water productivity using a coupled SWAT–MODSIM model. Water 9(3):157
Ashraf Vaghefi S, Abbaspour N, Kamali B and Abbaspour KC (2017b) A toolkit for climate change analysis and pattern recognition for extreme weather conditions- Case study: California-Baja California Peninsula. Environmental Modelling and Software 96:181-198
Fereidoon M and Koch M (2018) SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change. Science of the Total Environment 630:502-516
Gain AK and Giupponi C (2015) A dynamic assessment of water scarcity risk in the Lower Brahmaputra River Basin: An integrated approach. Ecological Indicators 48:120-131
Gassman PW, Sadeghi AM and Srinivasan R (2014) Applications of the SWAT model special section: Overview and insights. Journal of Environment Quality 43(1):1
Hajihoseini H, Hajihoseini M, Najafi A, Morid S, and Delavar M (2015) Assessment of the effect of land-use changes on streamflow in Helmand transboundary basin during 1990 to 2012 using remote sensed data & SWAT model. Iran-Water Resources Research 11(1):73-86
Hashimoto T, Stedinger JR, and Loucks DP (1982) Reliability, resiliency, and vulnerability criteria. Water Resources Research 18(1):14-20
Havrylenko SB, Bodoque del Pozo JM, Srinivasan R, Zucarelli G V, and Mercuri P (2016) Assessment of the soil water content in the Pampas region using SWAT. Catena, Elsevier B.V., 137:298-309
Höllermann B, Giertz S, and Diekkrüger B (2010) Benin 2025-balancing future water availability and demand using the WEAP “Water Evaluation and Planning” system. Water Resources Management 3591-3613
Huyen NT, Tu LH, Tram VNQ, Minh DN, Liem ND, and Loi NK (2017) Assessing the impacts of climate change on water resources in the srepok watershed, central highland of Vietnam. Journal of Water and Climate Change 8(3):524-534
Ibisch R B, Bogardi J J, Borchardt D (2016) Integrated water resources management: Concept, research and implementation. Springer International Publishing, Switzerland
Kumar N, Kumar S, Vikram S, Singh G, and Dzwairo B (2018) Investigation of impacts of land use / land cover change on water availability of Tons River Basin, Madhya Pradesh, India. Modeling Earth Systems and Environment 4(1): 295-310
Li X, Zhao Y, Shi C, Sha J, Wang ZL, and Wang Y (2015) Application of Water Evaluation and Planning (WEAP) model for water resources management strategy estimation in coastal Binhai New Area, China. Ocean and Coastal Management 106:97-109
Maliehe M and Mulungu DMM (2017) Assessment of water availability for competing uses using SWAT and WEAP in South Phuthiatsana catchment, Lesotho. Physics and Chemistry of the Earth 100:305-316
McMahon TA, Adeloye AJ, and Zhou SL (2006) Understanding performance measures of reservoirs. Journal of Hydrology 324(1-4):359-382
Moriasi DN, Arnold JG, Liew MW Van, Bingner RL, Harmel RD, and Veith TL (2007) M e g s q a w s. 50(3):885–900
Moshfegh A, Moridi A, Attari J (2019) Water resource planning based on the sovereignty doctrines in sharing transboundary water resources. Iran-Water Resources Research 14(4):86-95
Nairizi S (2006) Integrated water resources management IWRM in critical arid basin or Iran (Mashhad basin). World Water Forum, 4. WWC, 1-31
Narsimlu B, Gosain AK, and Chahar BR (2013) Assessment of future climate change impacts on water resources of upper Sind River Basin, India using SWAT model. Water Resources Management 27(10):3647-3662
Neitsch S, Arnold J, Kiniry J, and Williams J (2011) Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute 1-647
Okungu J, Adeyemo J, and Otieno F (2017) Scenario analysis of water supply and demand using WEAP model: A case of Yala Catchment . Kenya 5(4):125-131
Peterson S (2013) Why a dam in Afghanistan might set back peace. Christian Science Monitor
Qiu L jing, Zheng F li, and Yin R S (2012) SWAT-based runoff and sediment simulation in a small watershed, the loessial hilly-gullied region of China: Capabilities and challenges. International Journal of Sediment Research. International Research and Training Centre on Erosion and Sedimentation and the World Association for Sedimentation and Erosion Research 27(2):226-234
Rahman K, Maringanti C, Beniston M, Widmer F, Abbaspour K, and Lehmann A (2013) Streamflow modeling in a highly managed mountainous glacier watershed using SWAT: The upper Rhone River Watershed Case in Switzerland. Water Resources Management 27(2):323-339
Sandoval-Solis S and McKinney DC (2011) Water planning and management for large scale river basins: Case of study of the Rio Grande/Rio Bravo transboundary basin. Center for Research in Water Resources, University of Texas at Austin
Shoghi Javan A, Ahmadi A (2019) A stability analysis of water sharing in transboundary rivers using game theory: A case study: Harirud River. Iran-Water Resources Research 14(4):108-119
Teutschbein C and Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. Journal of Hydrology 456-457:12-29
Thomas V and Warner J (2015) Hydropolitics in the Harirud/Tejen River Basin: Afghanistan as hydro-hegemon? Water International, Routledge 40(4):593-613
Tibebe D and Bewket W (2011) Surface runoff and soil erosion estimation using the SWAT model in the Keleta Watershed, Ethiopia. Land Degradation and Development 22(6):551-564
Yates D, Sieber J, Purkey D and Huber-Lee A (2005) WEAP21- A demand-, priority-, and preference-driven water planning model. Part 1: Model characteristics. Water International 30(4):487-500
Zhu X, Zhang C, Qi W, Cai W, Zhao X, and Wang X (2018) Multiple climate change scenarios and runoff response in Biliu River. Water (Switzerland) 10(2):1-17