ارزیابی تغییرات زمانی-مکانی شاخص‌های فصلی منحنی تداوم جریان (FDCSI) طی چهار دهه در حوزه دریاچه نمک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری بیابان زدایی/ گروه بیابان زدایی، دانشکده کویرشناسی، دانشگاه سمنان، سمنان، ایران.

2 دانشیار / گروه بیابان زدایی، دانشکده کویرشناسی، دانشگاه سمنان، سمنان، ایران.

3 دانشیار/ گروه احیای مناطق بیابانی و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران.

چکیده

جریان کمینه، مؤلفه‌ای مهم بمنظور بررسی میزان آب دردسترس بویژه در مناطق خشک است که جهت مدیریت خشکسالی و کاهش آن مورد استفاده قرار می‌گیرد. مطالعه حاضر به بررسی تغییرات زمانی-مکانی پدیده خشکسالی هیدرولوژیکی در سطح حوزه دریاچه نمک بر پایه‌ی شاخص‌های فصلی منحنی تداوم جریان (FDCSI) شامل Q70، Q80، Q90، Q95 و Q99 می‌پردازد. برای این منظور، 18 ایستگاه با حداکثر آمار بلندمدت (43 سال) انتخاب و مقادیر FDCSI براساس دو فصل تابستان (خرداد تا آبان) و زمستان (آذر تا اردیبهشت) استخراج گردید. از آزمون‌های ناپارامتری من-کندال، من-کندال اصلاح شده و برآوردگر شیب سن جهت شناسایی روند زمانی و توان هرست جهت بررسی حافظه بلندمدت استفاده شد. برپایه نتایج هرست، اغلب سری‌های زمانی دارای حافظه بوده ولی الگوهای یکپارچه‌ای تبیین نگردید. روند کاهشی شدید معنی‌دار براساس شاخص‌های فصلی تابستانه و زمستانه به ترتیب در 66-50 و 50-38 درصد از کل ایستگاه‌ها شناسایی شد. علاوه‌براین روند ضعیف افزایشی در 11-5 درصد ایستگاه‌های مطالعاتی در سطح معنی‌داری 95 و 99 درصد مشاهده گردید. ارزیابی نتایج شاخص‌های فصلی نشان داد، جریان تابستانه به علت عدم تأمین دبی پایه، خشکسالی شدیدتری طی دوره 2012-1970 متحمل شده است. الگوهای زمانی بارشی، افزایش تبخیر-تعرق، تغییر کاربری اراضی و در نهایت برداشت بیش از حد از منابع آب سطحی و زیرزمینی جهت اهداف کشاورزی از عوامل احتمالی روند کاهشی شدید طی فصل تابستان است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Spatio-temporal changes evaluation of Flow Duration Curve Seasonal Indexes (FDCSI) during four decades in Namak Lake Basin

نویسندگان [English]

  • Zahra Sheikh 1
  • Mohammad Reza Yazdani 2
  • Alireza Moghaddam nia 3
1 PhD student of Combat Desertification, Department of Combat Desertification, Faculty of Desert Studies, University of Semnan, Semnan, Iran.
2 Associate Professor, Department of Combat Desertification, Faculty of Desert Studies, University of Semnan, Semnan, Iran.
3 Associate Professor, Department of Rehabilitation of Arid and Mountainous Regions, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
چکیده [English]

Low flow is an important component for investigating the available water, especially in arid regions, which is applied to manage drought and to reduce it. The spatio-temporal changes of hydrological drought phenomenon based on Flow Duration Curve Seasonal Indexes (FDCSI) including Q70, Q80, Q90, Q95 and Q99 in Namak Lake basin were investigated in the present study. For this purpose, 18 stations with the maximum long-term data (43 years) were selected and FDCSI values were extracted based on summer (June to November) and winter (December to May) seasons. Non-parametric tests including Mann-Kendal, Modified Mann-Kendal and Sen Slope Estimator were performed to determine the time trend. Furthermore, Hurst exponent was applied to investigate the long-term memory. Based on Hurst results, most of the time series have memory but uniform patterns are not recognized for them. The significant decreasing trend was identified based on summer and winter seasonal indexes at 55-66% and 38-50% of the total stations, respectively. In addition, a slight increasing trend was observed at 5-11% of study stations at a significant level of 95 and 99%. The evaluation of the results of seasonal indexes showed that summer flow had more serve drought due to lack of base flow during 1970-2012. Severe decline trend during the summer season might occur due to the time patterns of rainfall, increasing evapotranspiration, changing land use and finally, over-harvesting of surface and groundwater resources for agricultural purposes.

کلیدواژه‌ها [English]

  • Flow Duration Curve
  • Hydrological drought
  • Spatio-temporal Trend
  • Hurst exponent
  • Namak Lake Basin
Abghari H, Tabari H and Hosseinzadeh Talaee P (2013) River flow trends in the west of Iran during the past 40years: Impact of precipitation variability. Global and Planetary Change 101:52-60
Abkhan Consulting Engineers (2013) Updated studies for balancing of water resources in the studied regions of Namak Lake Basin. (In Persian)
Assani AA, Chalifour A, Légaré G, Manouane C-S and Leroux D (2011) Temporal regionalization of 7-day low flows in the St. Lawrence watershed in Quebec (Canada). Water Resources Management 25(14):3559-3574
Atieh M, Taylor G M A, Sattar A and Gharabaghi B (2017) Prediction of flow duration curves for ungauged basins. Journal of Hydrology 545:383-394
Azizabadi Farahani M and Khalili D (2013) Seasonality characteristics and spatio-temporal trends of 7-day low flows in a large, semi-arid watershed. Water Resources Management 27(14):4897-4911
Barker LJ, Hannaford J, Chiverton A and Svensson C (2016) From meteorological to hydrological drought using standardised indicators. Hydrology and Earth System Sciences 20(6):2483-2505
Bawden AJ, Linton HC, Burn DH and Prowse TD (2014) A spatiotemporal analysis of hydrological trends and variability in the Athabasca River region, Canada. Journal of Hydrology 509:333-342
Burn DH, Sharif M and Zhang K (2010) Detection of trends in hydrological extremes for Canadian watersheds. Hydrological Processes 24(13):1781-1790
Coch A and Mediero L (2016) Trends in low flows in Spain in the period 1949–2009. Hydrological Sciences Journal 61(3):568-584
de Wit MJM, van den Hurk B, Warmerdam PMM, Torfs PJJF, Roulin E and van Deursen WPA (2007) Impact of climate change on low-flows in the river Meuse. Climatic Change, Kluwer Academic Publishers 82(3-4):351-372
Dodangeh S, Soltani S and Sarhadi A (2012) Trend assessment of extream flows (low flow and flood) in Sefid-Roud Basin. Journal of Water and Soil Science 15(58):215-230 (In Persian)
 Ehsanzadeh E and Adamowski K (2010) Trends in timing of low stream flows in Canada: impact of autocorrelation and long-term persistence. Hydrological Processes 24(8):970-980
Fiala T, Ouarda TBMJ and Hladný J (2010) Evolution of low flows in the Czech Republic. Journal of Hydrology 393(3-4):206-218
Foulon É, Rousseau AN and Gagnon P (2018) Development of a methodology to assess future trends in low flows at the watershed scale using solely climate data. Journal of Hydrology 557:774-790
Giuntoli I, Renard B, Vidal J-P and Bard A (2013) Low flows in France and their relationship to large-scale climate indices. Journal of Hydrology 482:105-118
Hamed KH and Ramachandra Rao A (1998) A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology 204(1-4):182-196
Huang S, Huang Q, Chang J and Leng G (2016) Linkages between hydrological drought, climate indices and human activities: a case study in the Columbia River basin. International Journal of Climatology 36(1):280-290

Hurst HE (1951) Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers

116:770–799
Kendall M (1975) Rank correlation measures. London: Charles Griffin
Khalili K, Tahoudi MN, Mirabbasi R and Ahmadi F (2016) Investigation of spatial and temporal variability of precipitation in Iran over the last half century. Stochastic Environmental Research and Risk Assessment 30(4):1205-1221
Khaliq MN, Ouarda TBMJ and Gachon P (2009) Identification of temporal trends in annual and seasonal low flows occurring in Canadian rivers: The effect of short- and long-term persistence. Journal of Hydrology 369(1):183-197
Konapala G, Valiya Veettil A and Mishra AK (2018) Teleconnection between low flows and large-scale climate indices in Texas River basins. Stochastic Environmental Research and Risk Assessment 32(8):2337-2350
Ljung GM and Box GEP (1978) On a measure of lack of fit in time series models. Biometrika 65(2):297
Mann HB (1945) Nonparametric tests against trend. Econometrica, The Econometric Society 13(3):245
Masih I, Uhlenbrook S, Maskey S and Smakhtin V (2011) Streamflow trends and climate linkages in the Zagros Mountains, Iran. Climatic Change 104(2):317-338
Modarres R, Sarhadi A and Burn DH (2016) Changes of extreme drought and flood events in Iran. Global and Planetary Change 144:67-81
Sen PK (1968) Estimates of the regression coefficient based on Kendall’s Tau. Journal of the American Statistical Association 63(324):1379-1389
Smakhtin V (2001) Low flow hydrology: a review. Journal of Hydrology 240(3-4):147-186
Svensson C, Kundzewicz WZ and Maurer T (2005) Trend detection in river flow series: 2. Flood and low-flow index series / Détection de tendance dans des séries de débit fluvial: 2. Séries d’indices de crue et d’étiage. Hydrological Sciences Journal, IAHS Press 50(5)
Tabari H and Hosseinzadeh Talaee P (2011) Analysis of trends in temperature data in arid and semi-arid regions of Iran. Global and Planetary Change 79(1-2):1-10
Theil H (1950) A rank-invariant method of linear and polynomial regression analysis, 3; confidence regions for the parameters of polynomial regression equations. Stichting Mathematisch Centrum. Statistische Afdeling.
Yang T, Xu C-Y, Shao Q, Chen X, Lu G-H and Hao Z-C (2010) Temporal and spatial patterns of low-flow changes in the Yellow River in the last half century. Stochastic Environmental Research and Risk Assessment 24(2):297-309
Yekom Consulting Engineers (2012a) Studies on updating master plan of water in Namak Lake, Gavkhouni, Siahkooh, Rig-Zarin and Central Desert basins: report of studies on surface water resources (quantitative and qualitative). (In Persian)
Yekom Consulting Engineers (2012b) Studies on updating master plan of water in Namak Lake, Gavkhouni, Siahkooh, Rig-Zarin and Central Desert basins: report of meteorology and climatology. (In Persian)