ارزیابی عدم قطعیت مدل سیلاب شهری SWMM با استفاده از روش GLUE مطالعه موردی: منطقه 2 شهرداری کلان‌شهر تبریز

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش آموخته دکتری / سازه های آبی، دانشگاه علوم کشاورزی و منابع طبیعی ساری.

2 دانشیار / گروه مهندسی آب، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

3 استاد / گروه مهندسی عمران، دانشکده عمران، دانشگاه تبریز.

4 دانشیار/ گروه مهندسی عمران، دانشکده عمران، دانشگاه بیرجند

چکیده

با توجه به پیچیدگی‌های موجود در محیط‌های شهری، در سال‌های اخیر ریسک سیلاب در حوضه‌های شهری افزایش یافته است. برای ایجاد یک مدیریت صحیح شهری و استفاده بهینه از آب‌های سطحی، باید شناختی دقیق از فرآیند پیچیدة بارش-رواناب در محیط‌های شهری به‌دست‌آید. از مشکلات حوضه‌های شهری عدم وجود پارامترهای ورودی دقیق، عدم شناخت از فرآیند تولید رواناب، عدم وجود سیستم اندازه‌گیری جریان در خروجی زیر حوضه‌های شهری برای واسنجی، عدم قطعیت پارامترهای ورودی و نتایج مدل‌های ریاضی و عددی همچون SWMM می‌باشد. این تحقیق به بررسی و تحلیل عدم قطعیت به روش GLUE در سطوحی از منطقه 2 شهرداری کلان‌شهر تبریز با مدل سیلاب شهری SWMM پرداخته است. به‌منظور کمی کردن عدم قطعیت، محدوده اولیه پارامترهای ورودی شامل شماره منحنی، درصد نفوذناپذیری، ضریب‌ زبری سطح نفوذپذیری و ضریب ‌زبری سطح نفوذناپذیری تعیین و با استفاده از الگوریتم GLUE عملیات نمونه‌برداری اولیه از فضای پارامتری توسط روش نمونه‌گیری مربع لاتین انجام شد. با توجه به نتایج شبیه‌سازی‌ها و مقادیر رخدادهای به‌هنگام مشاهداتی، ۲۰ درصد از کل خروجی‌ها و سری پارامترهای تولید شده به‌عنوان شبیه‌سازی‌های قابل قبول جدا شدند. مطابق نتایج ارزیابی نمودارهای توزیع پسین، پارامترهای ورودی درصد نفوذناپذیری و ضریب زبری سطح نفوذناپذیری به‌عنوان پارامترهای حساس و تاثیرگذار بر شبیه‌سازی مدل شناخته شدند و محدوده بهیه پارامترها تعیین شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment Uncertainty of SWMM Urban Flood Model Using GLUE Method Case Study: 2nd District Municipality of Tabriz

نویسندگان [English]

  • M. Kobarfard 1
  • R. Fazloula 2
  • M. Zarghami 3
  • A. Akbarpour 4
1 Ph.D. Water Structures, Sari Agricultural Sciences and Natural Resources University.
2 Associate Professor, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University.
3 Professor, Faculty of Civil Engineering, Tabriz University.
4 Associate Professor, Faculty of Civil Engineering, Birjand University
چکیده [English]

Given the complexity of urban environments, flood risk has increased in urban areas in recent years. In order to estab-lish a correct urban management, the control and optimal use of surface water should be carefully understood from the complex rainfall-runoff process in urban environments. The problems of urban basins are the lack of precise input pa-rameters, the lack of knowledge of the runoff production process, the lack of a flow measurement system at the outlet of sub-basins to calibrate and uncertain input parameters, and the results of mathematical and numerical models such as SWMM. This research investigates and analyzes the uncertainty of the GLUE method at levels in District 2 of the Metropolitan Municipality of Tabriz, with SWMM urban flood model. In order to quantify the uncertainty, the initial range of input parameters including CN, impervious, N pervious and N-impervious was determined. Using the GLUE algorithm, initial sampling operations were performed using parametric space by lattice square sampling. According to the results of simulations and the magnitudes of observational events, 20% of the total outputs and the series of gener-ated parameters were separated as acceptable simulations. According to the results of the evaluation of the distribution diagrams, Imperv% and N Imperv input parameters were identified as sensitive and effective parameters on model simulation and the range of parameters was obtained.

کلیدواژه‌ها [English]

  • GLUE Method
  • SWMM Model
  • Urban Flood
  • Uncertainty
Alizadeh A (2015) Applied hydrology. Astan Quds Razavi press, 800 p (In Persian)

Badiyazadeh S, Bahremand A, Dehghani A, Nora N (2015) Urban flood management through surface runoff simulation using SWMM model in Gorgan. Journal of Water and Soil Conservation Research 22(4):155-170 (In Persian)

Beven KJ, Binley A) 1993( The future of distributed models: model calibration and uncertainty prediction. Hydrological Process 6(3):279-298

Beven KJ, and Binley A) 1992( The future of distributed models: Model calibration anduncertainty prediction. Hydrological Processes 6:279–298

Binley AM, Beven KJ, Calver A and Watts LG (1991) Changing responses in hydrology assessing the uncertainty in physically based model predictions. Water Resources Research 27(6):1253-1261

Beven K and Freer J (2001) Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. Journal of Hydrology 249:11-29

Blasone RS, Vrugt J A, Madsen H, Rosbjerg D, Robinson BA and Zyvoloski GA (2008) Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Advance in Water Resources 31:630-648

Campbell EP, Fox DR and Bates BC (1999) A Bayesian approach to parameter estimation and pooling in nonlinear flood event models. Water Resource Research 35:211-220

Derrickand D, Akbarpour A, Bilandi MP, Hashemi SR (2013) Flood simulation based on uncertainty using GLUE method. In: 12th Iranian Hydraulic Conference, University of Tehran, 11pp (In Persian)

Farzi A (2011) Investigation of the uncertainty of rainfall-runoff modeling in urban basins using fuzzy parameters. In: Second National Conference on Iranian Water Resources Research, Zanjan, 8 pp (In Persian)

Heidari A, Saghafian B, And Maknon R (2004) Flood hydrograph simulation based on uncertainty of rainfall runoff model parameters. Journal of Esteghlal 23(2):93-111 (In Persian)

Kobarfard M, Fazloula R (2015) Quantitative and qualitative modeling of urban flood with EPA-SWMM model. Case study part of Tehran 22 area.  In: Third National Conference on Flood Management and Engineering, Tehran 14 pp (In Persian)

Karami M, Ardeshir A, Behzadian K (2015) Hazard management of inundation and pollutants in urban floods using optimal conventional and novel strategies. Journal of Iranian Water Resources Research 11(3):100-112 (In Persian)

Lee JG, Heaney JP, Pack CA (2010) Frequency methodology for evaluating urban and highway storm-water quality control infiltration BMPs. Journal of Water Resources Planning and Management 136(2):237

Mannina G (2011) Uncertainty assessment of a water-quality model for ephemeral rivers using GLUE analysis. Journal of Environmental Engineering 137:177-186

Meishui L, Xiaohua Y, Boyang S, Lei C, Zhenyao S (2016) Parameter uncertainty analysis of SWMM based on the method of GLUE. 7th International Conference on Biology, Environment and Chemistry. Volum 98 of IPCBEE. 6pp

Montanari A (2005) Large sample behaviors of the generalized likelihood uncertainty estimation (GLUE) in assessing the uncertainty of rainfall-runoff simulations. Water Resources Research 41:W 08406

Rossman LA (2015) Storm water management model user’s manual version 5.1. EPA- 600/R-14/413b, National Risk Management Laboratory Office of Research and Development U.S. Environmental Protection Agency, Cincinnati, OH 45268, 353 p

Vrugt JA, Gupta HV, Bouten W and Sorooshian S (2003) A shuffled complex evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resources Research 39(8):1-14

Water and Waste Water standard (2001) Guidelines for determining the roughness coefficients of river, No. 331- A, 106p (In Persian)

Wei Z, Tian L, Meihong D (2015) Uncertainty assessment of water quality modeling for a small-scale urban catchment using the GLUE methodology: a case study in Shanghai, China. Environ Sci Pollut Res 22(12):9241-9