ارائه مدل تولید- سودآوری نیروگاههای برقابی با رویکرد پویایی سیستم

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری اقتصاد/ پردیس بین الملل دانشگاه فردوسی مشهد.

2 دانشیار گروه اقتصاد/ دانشکده علوم اداری و اقتصادی، دانشگاه فردوسی مشهد

3 استادیار گروه اقتصاد / دانشکده علوم اداری و اقتصادی، دانشگاه فردوسی مشهد.

4 استاد گروه اقتصاد / دانشکده علوم اداری و اقتصادی، دانشگاه فردوسی مشهد.

چکیده

صنعت برق ایران به دنبال راههایی برای کارایی بهتر در تولید، توزیع و انتقال انرژی برق در سال‌های اخیر است. تغییر قوانین در جهت رقابتی شدن، صنعت برق در ایران را دستخوش تغییر نموده است. با وجود ناطمینانی‌ها در قیمت بازار، میزان آب ورودی سدها، رفتار بازیگران، دسترسی به اطلاعات و درنتیجه افزایش ریسک، برنامه‌ریزی و تصمیم گیری برای تولیدکنندگان انرژی برقابی برای کسب حداکثر سود در بازار برق دشوارتر شده است. در این وضعیت، اتخاذ یک روش تصمیم‌گیری درست برای بهره‌برداری بهینه از نیروگاهها همواره یکی از دغدغه‌های اصلی این تولیدکنندگان است. در این تحقیق یک مدل پویای تولید-سودآوری، به منظور مدل‌سازی عملیات یک سیستم مخزنی برقابی و روند سودآوری تولیدکننده بسط داده شده که با استفاده نرم‌افزار Stella در یک محیط شبیه‌سازی شیءگرا با رویکرد پویایی-های سیستم مورد بررسی قرار گرفته است. اطلاعات سری زمانی سالهای 1394-1384 بصورت ماهانه مورد استفاده قرار گرفته و پیش‌بینی‌ها برای یک دوره 24 ماهه انجام شده است. این پژوهش برای مطالعه سودآوری نیروگاههای برقابی با استفاده از اطلاعات سد کارون1 در حوزه آبریز کارون بزرگ صورت گرفته است. در این تحقیق نااطمینانی وضعیت جریان ورودی آب و قیمت برق برای این تولیدکننده به وسیله مدل گومز پیش‌بینی شده و وارد مدل شده‌ است. روش-های رهاسازی آب و هزینه‌های جریمه به صورت سناریوهای جداگانه مورد بررسی قرار گرفته‌اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Production-Profitability Model designed for Hydropower plants with System Dynamics Approach

نویسندگان [English]

  • A. Jamalmanesh 1
  • M. Khodaparast Mashhadi 2
  • A. Seifi 3
  • M.A. Falahi 4
1 PhD Candidate of Economics, International Campus, Ferdowsi University of Mashhad, Iran.
2 Associate Professor of Economics, Department of Economics, Faculty of Economics and Administrative Sciences, Ferdowsi University of Mashhad, Iran
3 Assistant Professor of Economics, Department of Economics, Faculty of Economics and Administrative Sciences, Ferdowsi University of Mashhad, Iran
4 Professor of Economics, Department of Economics, Faculty of Economics and Administrative Sciences, Ferdowsi University of Mashhad, Iran
چکیده [English]

Iran's electricity industry are looking for better ways and more efficient in generation, transmission and distribution of electrical power in recent years. The industry rules have changed to become more competitive. With uncertainty in market price, water inflow, the beneficiary's behavior, access to information and risk increasing, the profit maximization has been more difficult in electricity market for hydroelectric energy producers. In this situation, pursue a decision-making for optimum operating of power plants is one of the main producers concerns. For this purpose, time series data on average monthly during 2005–2015 was used and profit is forecasted for twenty-four months. For this study, energy data from Karun river hydropower plant karun1 was used. Firstly, Gómes-Maravall model was used to predict of electricity price and river inflow. Then, using an ARIMA model was estimated for operating and maintenance cost in the hydropower plant. In this research to study of hydropower plant profitability was used the system dynamics approach and multiple scenarios like: climate change and penalty costs scenarios.

کلیدواژه‌ها [English]

  • Production-profitability model
  • system dynamics
  • Hydropower plants
  • Monte Carlo methods
Arshadi  M, Bagheri A (2014) A system dynamic approach to sustainability analysis in karun river basin, Iran. Iran-Water Resources Research 9(3):1-13 (In Persian)

Azrakani M, Shokoohi A, Singh V (2017) Introducing a holistic ecological model under data shortage for determining rivers’ ecological water requirements. Iran Water Resources Research 13(2):140-153 (In Persian)

Cheng CT, Chau K, Sun Y, Lin Y (2005) Long-term prediction of discharges in Manwan Reservoir using artificial neural network models. Lect Notes Science 3498:1040-1045

Costanza R, Gottlieb S (1998) Modeling ecological and economic systems with STELLA: part II. Ecol Model 112(2–3):81-84

Forrester JW (1961) Industrial dynamics. Productivity Press, Portland

Fotookian M, Safari N, Zarghami, M (2017) System dynamics modeling of Yamchi Reservoir (Iran) by applying optimum cropping pattern for operation policy proposal. Iran Water Resources Research 13(3):1-16 (In Persian)

Hannon B, Ruth M (1997) Modeling dynamic biological systems. Springer, New York

Ghadami  S, Ghahraman  B, Sharifi M, and Rajabi Mashhadi H (2009) Optimization of multireservoir water resources systems operation using genetic algorithm. Iran-Water Resources Research 5(2):1-15 (In Persian)

Ghasemianfard E, Mosavirad S H (2017) Undelivered electricity in North-Kerman Electricity Distribution Company: system dynamics analysis. Quarterly journal of energy policy and planning research 3(8):119-145

González AM, Roque AMS, Garcia-Gonzalez J et al. (2005) Modeling and forecasting electricity prices with input/output hidden Markov models.  IEEE Transactions on Power Systems  20(1):38-52

Hashimoto T, Stedinger JR, Loucks DP (1982) Reliability, resiliency and vulnerability criteria for water resource system performance evaluation. Water Resources 18(1):14-20

Haghbin S, Alimohammadi S (2018) Development of flexible rule curve for reservoir operation via fuzzy approach. Iran-Water Resources Research 13(4):132-143

Haghighat H (2008) On the self-scheduling of a power producer in uncertain trading environment. Electric Power System Research 78:311-317

Hosseini Safa  H, Morid S and Moghaddasi M (2011) Evaluation of fuzzy rule generation methods for reservoir operation. Iran-Water Resources Research 7(1):13-25 (In Persian)

Hoyland K and Wallace SW (2001) Generating scenario trees for multi-stage decision problems. Manage Science  47(2):295-307

Jabr RA (2005) Robust self-scheduling underprice uncertainty using conditional value-at-risk. IEEE Trans. Power System 20:1852-1858

Jahani E, Mousavi SJ (2017) How much information on future stream flows is utilizable in design and operation of dam reservoirs? Iran-Water Resources Research 12(4):50-59 (In Persian)

Jamalmanesh A, Khodaparast Mashhadi M, Seifi A, Mohammad Ali Falahi MA (2018) Prediction of hydropower energy price using Gómes-Maravall seasonal model. International Journal of Energy Economics and Policy 8(2):81-88

Ladurantaye Daniel D, Gendreau M and Potvin Y (2009) Optimizing profits from hydroelectricity production. Computers & Operations Research 36:499-529

Majidi Kh M, Alizadeh A, Farid A, Vazifedoust M (2017) Evaporation from lakes and reservoirs: developing a remote sensing algorithm of refrence and water surface energy balance. Iran Water Resources Research 13(2):154-169 (In Persian)

Miloca SA, Volpi NMP, Yuan J and Pinto C (2015) Expansion planning problem in distribution system with reliability evaluation: an application in real network using georeferenced database. International Journal of Electrical Power & Energy Systems 70:9-16

Ministry of Energy, Deputy for Energy (2014) Energy balance. Ministry of Energy, Office of Planning for Electricity and Energy, Tehran

Moeini R (2015) Performance evaluation of the ant colony optimization algorithm for the optimal operation of a multi-reservoir system: comparing four algorithms. Iran-Water Resources Research 11(2):29-46 (In Persian)

Mosavirad S H, Godsian H, (2015) Analyzing the elites emigration and the impacts of preventive policies by using system dynamics. Strategic management research 21(59):37-63

Nelson RR and Winter SG (1982) An evolutionary theory of economic change. Cambridge MA: Belknap press of Harvard University Press

Raghibi V, Safavi H, Mortazavi-Naeini M (2017) Conjunctive use of water resources based on drought effects reduction. Iran Water Resources Research 13(1):20-3 (In Persian)

Roberts N, Andersen D, Deal R, Garet M, Shaffer W (1983) Introduction to computer simulation, a system dynamics approach. Productivity Press, Portland

Plazas MA, Conejo AJ and Prieto F (2005) Multimarket optimal bidding for a power producer. IEEE Trans, Power System 20(4):2041-2050

Safavi  H R, Golmohammadi  M H (2016) Evaluating the water resource systems performance using fuzzy reliability, resilience and vulnerability. Iran-Water Resources Research 12(1):68-83 (In Persian)

Sehlke G, Jacobson J (2005) System dynamics modelling of transboundary systems: the Bear River basin model. Ground Water 43(5):722-730

STELLA (2009) Structural Thinking, Experiential Learning Laboratory with Animation: model building and simulation tutorials. NH, USA

Stützle T and Hoos H (1997) Max-Min Ant System and local search for combinatorial optimization problems. In Proceedings of Meta heuristics, International Conference

Taghian M, Shirdeli A (2016) Maximizing the hydropower generation in multi-objective reservoir system (The 6 dams system of Karun). Water and Soil Conservation 23(3)

Teegavarapu R S, Simonovic S P (2014) Simulation of multiple hydropower reservoir perations using system dynamics approach. Water Resource Manage 28:1937-1958

Wu CL, Chau KW, Li SY (2009) Predicting monthly streamflow using data-driven models coupled with data preprocessing techniques. Water Resources 45:8-32

Zuwei Yu, Sparrow FT, Bowen BH (1998) A new long-term hydro production scheduling method for maximizing the profit of hydropower systems. IEEE Transaction on power system 13:66-71