ارزیابی توزیع و منشأ آرسنیک در آبخوان‌های کارستی، مطالعه موردی چشمه شور کارستی گرو در شرق خوزستان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادگروه علوم زمین دانشگاه شهید چمران اهواز

2 دانش آموخته کارشناسی ارشد

3 استاد گروه علوم زمین دانشگاه شهید چمران اهواز

4 دانشجوی دکتری دانشگاه شهید چمران اهواز

چکیده

در ایران چشمه‌های متعددی وجود دارند که به‌وسیله آرسنیک آلوده و غیرقابل‌شرب شده‌اند. چشمه گرو در محدوده مسجدسلیمان شاخصی ازاین‌گونه چشمه‌ها می‌باشد. به‌منظور بررسی غلظت آرسنیک تعداد 20 نمونه آب چشمه و پیزومترهای تاقدیس آسماری جمع‌آوری شدند. غلظت عناصر اصلی و عناصر فرعی (AS، Fe، Mn، Ni، V و Li) در نمونه‌ها اندازه‌گیری شد. مطالعات ICP-OES نیز بر روی 3 نمونه سازند اطراف منطقه انجام گردید. نتایج نشان داد که چشمه گرو دارای میزان آرسنیک بیش از ppb10 می‌باشد. بررسی‌های هیدروشیمی و آماری نمونه‌های آب و سنگ و همچنین همبستگی معنی‌دار آرسنیک با کاتیون‌های اصلی و نیکل و وانادیوم نشان می‌دهد عوامل انسان‌زاد تأثیری در میزان آرسنیک نداشته‌اند و می‌توان منشأ آرسنیک را زمین زاد (سازند گچساران و ورود شورابه های نفتی) دانست. چگونگی مکانیسم کلیدی آزادسازی و تحرک آرسنیک در فصل مرطوب تنفس بی‌هوازی باکتری‌های احیاکننده +Fe3 است، درحالی‌که در فصل خشک با احیایی‌تر شدن محیط (تأثیر بیشتر شورابه نفتی)، فعالیت میکروارگانیسم‌های SRB و IRB موجود در دهانه چشمه سبب احیا آهن به‌واسطه سولفید حاصل از تنفس سولفاتی می‌شود که این امر سبب تشکیل رسوب آرسنیک می‌گردد. همچنین آنالیز کروماتوگرافی گازی نفت موجود در چشمه، نشان می‌دهد بوی H2S حاصل احیاء ترموشیمیایی سولفات در مخازن کربناته می‌باشد. با توجه به نتایج این پژوهش استفاده از منابع آبی موجود در منطقه، سلامت ساکنین منطقه را تهدید می‌کند و بایستی از روش‌های حذف آرسنیک استفاده گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of the Distribution and Source of Arsenic in Karstic Aquifers, Case Study Garu Saline Karstic Spring in East of Khusetan, Southwestern Iran

نویسندگان [English]

  • Manouchehr Chitsazan 1
  • sahar shacheri 2
  • yahya mirzaei 3
  • tareq abuodi 4
1 geology department,shahid chamran university of Ahvaz
2 iran.chamran
3 Geology department, shahid chamran university of Ahvaz
4 iran.chamran
چکیده [English]

There are many springs in Iran that are contaminated by arsenic and therefore are not suitable for drinking purposes. Garu spring around Masjed Soleyman city is an indicator of such springs. In order to study the concentration of arsenic, 20 samples from spring and Asmari anticline observation wells were collected. Concentration of major and trace elements in the samples were measured. ICP-OES studies were carried out on 3 samples of the surrounding formation. The results showed that Garu spring has arsenic levels higher than 10ppb. Hydrochemical and statistical analyzes of water samples and sediment as well as significant correlation of arsenic with main cations, (i.e. Nickel and Vanadium) shows that anthropogenic factors do not have an effect on the amount of arsenic. It is found, that the origin of arsenic is geogenic (Gachsaran formation and oil brine influx). The mechanism of arsenic mobility during the wet season is the anaerobic respiration of Fe+3 reducing bacteria. Whereas, in the dry season, the environment is further reduced, as a result activity of the SRB and IRB in the span of springs leads to the reduction of iron by sulfide from sulfate respiration, this causes arsenic deposition. Also, gas chromatography analysis of the oil presented in spring shows that H2S is the result of thermochemical reduction of sulfate in carbonate reservoirs. According to the results of this study, the use of water resources in the region threatens the health of the inhabitants of the region, and arsenic removal methods should be used.

کلیدواژه‌ها [English]

  • ARSENIC
  • Garu spring
  • Gachsaran formation
  • Oil brine
  • Reducing Bacteria
Agnyaii F, Zarei M, Asadi S (2017) Study of the origin of fluoride in groundwater in southern Iran, Sahra bagh Larestan. Journal of Advanced applied geology 24:38-48 (In Persian)

Behbahaninia A, Farahani M (2016) Investigation of natural sources contamination with arsenic in the suburbs of Hashtrood city, East Azerbayjan Province. International journal of Environmental Science and Technology 3(18):469-475 (In Persian)

Bagherifam S, Lakzian A, Fotovat A, Khorasani R, Akbarzadeh S, Motadaien A (2014) Immobilization of arsenic in a calcareous soil using an iron-manganese and aluminum-modified zeoilite. International journal of Environmental Science and Technology 2(16):39-54 (In Persian)

Bundschuh J, Litter MI, Parvez F, Román-Ross G, Nicolli HB, Jean JSh, Liu Ch, López D (2011) One century of arsenic exposure in Latin America, a review of history and occurrence from 14 countries. Science of the Total Environment 429:2-35

Chitsazan M, Dorraninejad M, Zarasvandi A, Mirzaii S (2009) Occurrence distribution and source of arsenic in deep groundwater wells in Maydavood area, southwestern Iran. Environ Geol 58:727-737

Chitsazan M, Ghaderi G, Mirzaii SY, Papizade M (2013) Pollution related to oil brine and biological removal of arsenic in Grove Spring. Journal of Advanced Applied Geology 2(3):83-93 (In Persian)

Cutler WG, Brewer RC, El-Kadi A (2013) Bioaccessible arsenic in soils of former sugar cane plantations, Island of Hawaii. Science of the Total Environment 442:177–188

Foti M, Sorokin DY, Lomans B, Mussman M, Zacharova EE, Pimenov NV, Kuenen JG, Muyzer G (2007) Diversity activity and abundance of sulfate-reducing bacteria in saline and hypersaline Soda lakes. Applied and Environmental Microbiology 2093-2100

Ghaderi G (2012) Investigating the contamination of Asmari anticline karstic springs and providing proper removal method. M.Sc. thesis, Shahid Chamran university (In Persian)

Hashemi F, Moor F, Keshavarzi B, Rahmani A, Sharifi R (2015) Investigating arsenic contamination and pathways into Livestocks of Tekab area, West Azerbaijan Province. Journal of Environmental Geology 28(8):35-44 (In Persian)

 Haury V, Jann S, Kofod M, Scholz C, Isenbeck-Schroter M (2000) Redox-induced species distribution of arsenic in a suboxic groundwater environment–column experiments. In Proc. of the International Conference on Groundwater Research, Copenhagen, Denmark p. 197-198

 Hingston FJ, Posner AM, Quirk JP (1971) Competitive adsorption of negatively charged ligands on oxide surfaces. Discuss Faraday Soc. 52:334–342

 World Health Organization (2001) Arsenic and arsenic compounds. International Programme on Chemical Safety

 Islam F, Gault A, Boothman C, Polya D, Chrnock J (2004) Role of metal reducing bacteria arsenic release from Bengal Delta sediments. Nature 430:68-71

 Institute of Standards and Industrial Research of Iran (2008) Drinking water Physical and chemical specifications. Standard guidelines (In Persian)

Jia Y, Guo H , Xi B , Jiang Y, Zhang Z, Yuan R, Yi W, Xue X (2017) Sources of groundwater salinity and potential impact on arsenic mobility in the western Hetao Basin, Inner Mongolia. Science of the Total Environment 601–602:691–702

 Kaiser K (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23:187-200

Karimi N, Pormehr M, Ghasempour H R (2015) Contamination study of water, soil and wheat to arsenic of the Bijar region. Journal Environmental Sciences 12(4):36-25 (In Persian)

 Kesler SE, Gruber PW, Medina PA, Keoleian GA, Everson MP, Wallington TJ (2012) Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geology Reviews 48:55-69

Lim MS, Yeo IW, Clement TP, Roh Y, Lee KK (2007) Mathematical model for predicting microbial reduction and transport of arsenic in groundwater system. Water Research 41:2079–2088

Maharjan M, Watanabe CH, Ahmad SKA, Ohtsuka R (2005) Arsenic contamination in drinking water and skin manifestations in Lowland Nepal: the first community-based survey. American Journal of Tropical Medicine and Hygiene 73(2):477-479

Mandal BK, Roy Choudhury T, Samanta G, Basu GK, Chowdhury PP, Chandra CR, Lodh D, Karan NK, Dhar RK,Tamili DK, Das D, Saha KC, Chakroborti D (1996) Arsenic in groundwater in seven districts of West Bengal, India-the biggest arsenic calamity in the world. Current science 70:976–986

Mesdaghinia A, Mosaferi M, Yunesian M, Naseri S, Mehvari B (2005) The measurement of arsenic concentration in drinking water in a polluted area to arsenic by setting up experimental approach SDDC and use a field kit with accuracy and validity assessment of the methods. Health systems research journal 8(1):43-51 (In Persian)

Mirlean N, Baisch P, Diniz D (2014) Arsenic in groundwater of the Paraiba do Sul delta, Brazil: an atmospheric source. Science of the Total Environment 482-483:148–156

Mirzaei S, Zarrasvand A, Orang M (2015) Geochemical impact of Asmari reservoirs on Masjed Soleiman karst water resources. Journal of Advanced Applied Geology 18:1-14 (In Persian)

Newman D, Kennedy E, Coates J, Ahmann D, Ellis D, Lovely D, Morel F (1997) Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. Arch Microbial 168:380-388

Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944

Poyan F (2015) The effects of formation water in production reservoir Bangestan and Asmari. MSc Thesis, Shahid Chamran University of Ahvaz (In Persian)

Rajaei Q, Jahantigh H, Mir A, Hesari Motlagh S, Hasanpour M (2012) evaluation of concentration of heavy metals in Chahnimeh Water reservoirs of Sistan-va-Baloochestan Province. Journal of Mazandaran University of Medical Sciences 22(90):105-112 (In Persian)

Rezaei M (2009) The distribution of chromium, nickel and arsenic caused by the a output cement dust of Dorud factory in the soil around company and its environmental impact. MSc. Thesis ,Shahid Bahonar University (In Persian)

Rooney-Varga J, Anderson R, Fraga J, Ringrberg D, Lovely D (1999) Microbial communities associated with anaerobic benzene degradation in petroleum contaminated aquifer. Applied and Environmental Microbiology 65:3056-3063

Sabine L (2006) Diversity and abundance of sulfur-oxidizing bacteria in Wadden Sea sediments revealed by dsrab phylogeny and DSRAB-targeted real. MS.c Thesis, University of Bremen

Safari S, Asghari Moghaddam A, Nadiri A, Siahcheshm K (2016) Arsenic source and mechanism of its releases into groundwater resources of Chahardoli plain, Kurdistan province. Scientific Quarterly Journal Geosciences 25(99):261-270

Selinus O (2005) Essentials of medical geology. Elsevier Academic Press 832p

Shukla DP, Dubey CS, Singh NP, Tajbakhsh M, Chaudhry M (2010) Sources and controls of Arsenic contamination in groundwater of Rajnandgaon and Kanker District, Chattisgarh Central India. Journal of Hydrology 395(1-2):49–66

Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of Arsenic in natural water. Applied Geochemistry 17(5):517–568

Sorokin DY, Kuenen JG, Jetten MSM (2001) Denitrification at extremely high pH values by the alkaliphilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium Thioalkalivibrio denitrificans strain ALJD. Archives in Microbiology 175:94-101

Sorokin DY, Tourova TP, Lysenko AM, Gijs Kuenen J (2001) Microbial thiocyanate utilization under highly alkaline conditions. Applied and Environmental Microbiology 2:528-538

Sparks D, Selim H (2001) Heavy metals release in soils. CRC Press 264p

Stroud JL, Norton GJ, Islam MR, Dasgupta T, White RP, Price AH, Meharg AA, McGrath SP, Zhao FJ (2011) The dynamics of arsenic in four paddy fields in the Bengal delta. Environ Pollut 159:947–953

Vanaei M, Fathijoo D, Rahimimoghaddam H (2006) Study of environmental effect of arsenic in Divandareh area, In: Proc. of First conference on environmental and medicine geology. Tehran, Iran (In Persian)

Vink BW (1996) Stability relations of antimony and arsenic compounds in the light of revised and extended Eh–pH diagrams. Chemical geology 130:21–30

Webster JG (1990) The solubility of As2S3 and speciation of As in dilute and sulfide bearing fluids at 25 and 90°C. Geochimica et Cosmochimica Acta 54:1009-1017

Wilkie JA, Hering JG (1996) Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloids and Surfaces 107:97-110

Woods TL, Garrels RM (1987) Thermodynamic values at low temperature for natural inorganic materials. Oxford University Press, New York, 284p

Wever HE (2000) Petroleum and source rock characterization based on C7 star plot results: Examples from Egypt. American Association of Petroleum Geologists Bulletin 84:1041-1054

World Health Organization's (2017) Guidline for drinking water quality (edition 4). Geneva, 631p

Zarasvandi A, Mirzaei Y (2008) Petroleum contamination investigation of Masjed Soleiman Oil feild Springs. Report of Khuzestan Water and Power Organization 165 (In Persian)