ارزیابی توزیع و رفتار اورانیوم در آبخوان ارومیه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین شناسی، دانشکده زمین شناسی، دانشگاه شهید چمران، اهواز، ایران.

2 1- استاد گروه زمین‌شناسی دانشگاه شهید چمران اهواز

3 دانشگاه یزد . گروه زمین شناسی یزد

چکیده

مطالعه حاضر به بررسی تغییرات غلظت اورانیوم (U) در سه بازه زمانی، مکانیسم‌های گونه‌‌زایی، توزیع مکانی و منابع احتمالی اورانیوم در منابع آب‌ زیرزمینی آبخوان ارومیه پرداخته است. نتایج نشان می‌دهد که مقدار اورانیوم به طور کلی بیشتر از 1 میلی‌گرم بر کیلوگرم در سنگ‌های آذرین و دگرگونی و به طور معمول 2 تا 5 میلی‌گرم بر کیلوگرم در سنگ‌های رسوبی است. غلظت اورانیوم در همه نمونه‌های آب زیرزمینی کمتر از بیشترین مقدار توصیه شده توسط استانداردهای WHO، USEPA و استاندارد ایرانی برای آب آشامیدنی (30 میکروگرم بر لیتر) می‌باشد. توزیع مکانی اورانیوم نشان می‌دهد که بیشینه غلظت اورانیوم در نزدیکی سنگ‌های آذرین یافت می‌شود. بررسی گونه‌زایی اورانیوم در این آبخوان برای سه فصل نمونه‌برداری متوالی نشان می‌دهد که در هر سه بازه زمانی، اورانینیت (UO2) گونه غالب در آبخوان ارومیه می‌باشد. مدلسازی معکوس ژئوشیمیایی نشان می‌دهد که نمونه‌های آب زیرزمینی نسبت به تمامی گونه‌های اورانیوم‌دار در حالت تحت اشباع قرار دارند. بر اساس نتایج، تحرک اورانیوم در آب‌‌‌‌های زیرزمینی توسط عواملی همچون Eh، pH و غلظت یون‌های محلول همراه کنترل می‌شود. به طور کلی، سه مکانیسم اصلی در تحرک و یا رسوبگذاری اورانیوم شامل واجذب اورانیوم جذب شده بر روی کانی‌های آهن (به عنوان مثال هماتیت و گوتیت)، واجذب اورانیوم جذب شده بر روی کانی‌های رسی و انتشار اورانیوم از ساختار شبکه کربنات به دلیل جایگزینی با کلسیم می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An Evaluation of the Distribution and Behavior of Uranium in Urmia Aquifer

نویسندگان [English]

  • Nassim Sohrabi 1
  • Narsolah Kalantari 2
  • Vahab Amiri 3
1 Department of Geology,Faculty of geology, Shahid Chamran University, Ahvaz, Iran
2
3 Department of Geology,Kharazmi University, Tehran
چکیده [English]

This study examines changes in the concentration of uranium (U) in three different periods, the mechanisms of speciation, distribution, and potential sources of uranium in the groundwater resources of Urmia aquifer. The results show that the U content is generally more than 1 mg/kg in igneous and metamorphic rocks and typically 2–5 mg/kg in sedimentary rocks. Uranium concentration in all groundwater samples are below the maximum levels in drinking water recommended by WHO, USEPA and Iranian standard (30 ppb). The spatial distribution of U indicates that the maximum concentrations of U can be found in the vicinity of igneous rocks. Investigation of Uranium speciation in this aquifer for three consecutive sampling periods shows that uraninite (UO2) is the dominant species in Urmia aquifer in all three periods. The inverse geochemical modeling of groundwater samples demonstrates clearly that all samples are under-saturated respect with all uranium species. Based on the results, the mobility of uranium in groundwater is controlled by some factors such as Eh, pH, and concentrations of coexisting dissolved ions. In general, the three main mechanisms for controlling the mobility or deposition of uranium include the desorption of uranium absorbed onto ferric minerals (e.g. hematite and goethite), desorption of uranium adsorbed onto clay minerals and the release of uranium from the carbonate lattice structure due to replacement with calcium.

کلیدواژه‌ها [English]

  • Uranium
  • Groundwater
  • Urmia Aquifer
  • Speciation
Amiri V, Nakhaei M, Lak R, Kholghi M (2016) Geophysical, isotopic, and hydrogeochemical tools to identify potential impacts on coastal groundwater resources from Urmia hypersaline Lake, NW Iran. Environmental Science and Pollution Research 23:16738–16760
Amiri V, Nakhaei M, Lak R (2017) Using radon-222 and radium-226 isotopes to deduce the functioning of a coastal aquifer adjacent to a hypersaline lake in NW Iran. Journal of Asian Earth Sciences 147:128–147
APHA (American Public Health Association) (1985) Standard methods of the examination of water/wastewater (16th ed .(.New York: APHA, AWWA, and WPCF, 1268p
Bachmaf S, Planer-Friedrich B, Merkel BJ )2008( Effect of sulfate, carbonate, and phosphate on the uranium (VI) sorption behavior onto bentonite. Radiochim Acta 96:359–366
Bernhard G, Geipel G, Brendler V, Nitsche H (1998) Uranium speciation in waters of different uranium mining areas. Journal of Alloys and Compounds 271–273:201–205
Brugge D, Buchner V (2011) Health effects of uranium: new research findings. Rev. Environ. Health 26(4):231-249
Charalambous C, Aletrari M, Piera P, Nicolaidou-Kanari P, Efstathiou M, Pashalidis, I (2013) Uranium levels in Cypriot groundwater samples determined by ICP-MS and a-spectroscopy. Journal of Environmental Radioactivity 116:187-192
Drever JI (1997) The geochemistry of natural waters: surface and groundwater environments. 3rd ed. New Jersey, Prentice Hall, 436p
Gebeshuber I (2007) Europhysics news the origin of the elements of life. Technische Universitat Wien, Vienna
Gómez P, Garralón A, Buil B, Turrero MJ, Sánchez L, Delacruz B (2006) Modeling of geochemical processes related to uranium mobilization in the groundwater of a uranium mine. Science of the Total Environment 366:295–309
Gorman-Lewis D, Burns PC, Fein JB (2008) Review of uranyl mineral solubility measurements. The Journal of Chemical Thermodynamics 40:335–352
Hess CT, Michel J, Horton TR, Prichard HM, Coniglio WA (1985) The occurrence of radioactivity in public water supplies in the United States. Health Physics 48:553–586
Hsi CKD, Langmuir D (1985) Adsorption of uranyl onto ferric oxyhydroxides: application of the surface-complexation site-binding model. Geochimica et Cosmochimica Acta 49:1931–1941
Ioannidou A, Samaropoulos I, Efstathiou M, Pashalidis I (2011) Uranium in ground water samples of Northern Greece. Journal of Radioanalytical and Nuclear Chemistry 289:551–555
ISO (International Standards Organisation) (1993) Water quality—sampling—part 11: guidance on sampling of groundwaters. ISO 5667-11
Ivanovich M, Frohlich K, Hendry M (1991) Uranium-series radionuclides in fluids and solids, Milk River aquifer, Alberta. Canada, Applied Geochemistry 6(4):405–418
Jung HB, Boyanov MI, Konishi H, Sun Y, Mishra B, Kemner KM, Roden EE, Xu H (2012) Redox behavior of uranium at the nanoporous aluminum oxide- water interface: implications for uranium remediation. Environmental Science & Technology 46(13):7301-7309
Kacmaz H, Nakoman M (2009) Hydrochemical characteristics of shallow groundwater in aquifer containing uranyl phosphate minerals, in the Koprubas (Manisa) area, Turkey. Environmental Earth Sciences 59:449–457
Kamei T, Ikeda J, Ishida H, Ismda S, Onishi I, Partoazar H, Sasajima S, Nishimur S (1973) A general report on the geological and paleontological survey in Maragheh Area, North-West Iran. Internal Report, Geological Survey of Iran
Kovačević J, Nikić Z, Papić P (2009) Genetic model of uranium mineralization in the Permo-Triassic sedimentary rocks of the Stara Planina eastern Serbia. Sedimentary Geology 219(1-4):252-261
Krestou A, Panias D (2004) Uranium (VI) speciation diagrams in UO22+/CO32-/H2O System at 25 °C. European Journal of Mineral Processing and Environmental Protection 4(2):113–129
Krishnaswami S, Cochran JK (2011) U-Th series nuclides in aquatic systems. Volume 13 of Radioactivity in the Environment, 440 p
Kumar A, Rout S, Narayanan U, Mishra MK, Tripathi RM, Singh J, Kumar S, Kushwaha HS (2011) Geochemical modeling of uranium speciation in the subsurface aquatic environment of Punjab State in India. Journal of Geology and Mining Research 3:137–146
Kurttio P, Komulainen H, Leino A, Salonen L, Auvinen A, Saha H (2005) Bone as a possible target of chemical toxicity of natural uranium in drinking water. Environmental Health Perspectives 113(1):68-72
Langmuir D (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica et Cosmochimica Acta 42(12):547–569
Lauria DC, Almeida RMR, Sracek O (2004) Behavior of radium, thorium and uranium in groundwater near the Buena Lagoon in the Coastal Zone of the State of Rio de Janeiro, Brazil. Environmental Geology 47(1):11–19
Leggett R, Harrison J (1995) Fractional absorption of ingested uranium in humans. Health Physics 68:484–498
Liu C, Zachara JM, Qafoku NP, Wang Z (2008) Scale-dependent desorption of uranium from contaminated subsurface sediments. Water Resources Research 44(8)
Martinez R, Sánchez-Mata D, Costa M (1999) North American boreal and western temperate forest vegetation (syntaxonomical synopsis of the potential natural plant communities of North America II) Itinera. Geobotanica 12:5-316
Merkel B, Hasche-Berger A (2008) Uranium, mining and hydrogeology. Springer-Verlag, Berlin Heidelberg, 955p, ISBN 978-3-540-87745-5
Murphy WM, Shock EL (1999) Environmental aqueous geochemistry of actinides. Reviews in Mineralogy and Geochemistry 38:221-253
NOAA (National Oceanic and Atmospheric Administration) (2012) Oroomieh climate normals 1961-1990, Retrieved December 27
Not C, Brown K, Ghaleb B, Hillaire-Marcel C (2012) Conservative behavior of uranium vs. salinity in Arctic sea ice and brine. Marine Chemistry 130-131:33-39
Popit A, Vaupotič J, Kukar N (2004) Systematic radium survey in spring waters of Slovenia. Journal of Environmental Radioactivity 76:337–347
Porcelli D, Swarzenski PW (2003) The behavior of U- and Th-series nuclides in groundwater. Reviews in Mineralogy and Geochemistry 52:317–361
Rothbaum HP, McGaveston DA, Wall T, Johnston AE, and Mattingly GEG (1979) Uranium accumulation in soils from long-continued applications of superphosphate. Journal of Soil Science 30:147–153
Salas J, Ayora C (2004) Groundwater chemistry of the Okelobondo uraninite deposit area (Oklo, Gabon): two-dimensional reactive transport modeling. Journal of Contaminant Hydrology 69:115–137
Sartipi AH, Haghfarshi E, Karimi H, Shiva E, Seidi Sahbari P, Vakil Baghmisheh F, Zamani mehr S (2014) Geological report of the Urmia map (1:25000); 5065 III SW (In Persian)
Sheppard SC, Sheppard MI, Gallerand M-O, Sanipelli B (2005) Derivation of ecotoxicity thresholds for uranium. Journal of Environmental Radioactivity 79:55–83
Smedley PL, Smith B, Abesser C, Lapworth D (2006) Uranium occurrence and behaviour in British groundwater. British Geological Survey [Report No.: CR/06/050 N]
USEPA (2009) National primary drinking water regulations. Washington DC
Villalobos M, Trotz MA, Leckie JO (2001) Surface complexation modeling of carbonate effects on the adsorption of Cr(VI), Pb(II) and U(VI) on goethite. Environmental Science & Technology 35:3849–56
Waite TD, Davis JA, Payne TE, Waychunas GA, Xu N (1994) Uranium (VI) adsorption to ferrihydrite: application of a surface complexation model. Geochimica et Cosmochimica Acta 58:5465–5478
Wanty RB, Schoen R (1992) A review of the chemical processes affecting the mobility of radionuclides in natural waters, with applications. In: Gundersen, L.C.S., Wanty, R.B. (Eds.), Field Studies of Radon in Rocks, Soils, and Water. CRC Press, 183p
Welch AH, Lico MS (1998) Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada. Applied Geochemistry 13:521–539
WHO (2005) Uranium in drinking-water, background document for development of WHO guidelines for drinking-water quality. World Health Organization, Geneva
WHO (2011) Guidelines for drinking water quality, 4th edn. World Health Organization, Geneva
WMO (World Meteorological Organization) (2014) http://worldweather.wmo.int/en/city.html?cityId= 1454
Wu WM, Carley J, Gentry T, Ginder-Vogel MA, Fienen M, Mehlhorn T et al. (2006) Pilot-scale in situ bioremediation of uranium in a highly contaminated aquifer. 2. Reduction of U(VI) and geochemical control of U(VI) bioavailability. Environmental Science & Technology 40:3986–3995
Yang Q, Smitherman P, Hess CT, Culbertson CW, Marvinney RG, Smith AE, Zheng Y (2014) Uranium and radon in private bedrock well water in Maine: geospatial analysis at two scales. Environmental Science & Technology 48:4298-4306
Zamora M, Tracy B, Zielinski J, Meyerhof D, Mossf M (1998) Chronic ingestion of uranium in drinking water: a study of kidney bioeffects in humans. Toxicological Sciences 43(1):68–77
Zhou P, Gu BH (2005) Extraction of oxidized and reduced forms of uranium from contaminated soils: effects of carbonate concentration and pH. Environmental Science & Technology 39:4435-4440