تعدیل شاخص شدت خشکسالی پالمر (PDSI) بر مبنای طرحواره برهمکنش جو- سطح خشکی (ALSIS) در حوضه آبریز کرخه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای هواشناسی کشاورزی، گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

2 دانشیار، موسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران

3 دانشیار، گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

چکیده

در این مطالعه، طرحواره برهمکنش جو- سطح خشکی (ALSIS) جایگزین مدل ترازمندی آب شاخص شدت خشکسالی پالمر (PDSI) شد و شاخص شدت خشکسالی پالمر تعدیل شده (AL-PDSI) با نسخه خودواسنج شاخص شدت خشکسالی پالمر (SC-PDSI) مقایسه شد. ارزیابی شاخص های خشکسالی برای دوره زمانی 1983-2011 در حوضه آبریز کرخه بیانگر گزارش وقوع خشکسالی های شدیدتر به ازای تداوم معین توسط شاخص AL-PDSI در مقایسه با شاخص SC-PDSI است. همچنین، شاخص AL-PDSI توانایی نمایش تغییرات فصلی در درصد فراوانی نسبی رخداد خشکسالی را داشته و درصد فراوانی طبقات خشکسالی خفیف، متوسط و شدید بدست آمده برای شاخص AL-PDSI بیشتر از شاخص SC-PDSI است. با این وجود، از نظر همبستگی با تغییرات پوشش گیاهی و رطوبت خاک تفاوت قابل توجهی در مورد شاخص های SC-PDSI و AL-PDSI وجود ندارد. سازوکار فیزیکی تر شاخص AL-PDSI زمینه درک جامع تر مشخصه های خشکسالی را در مطالعات مبتنی بر سناریوهای تغییر اقلیم و تغییر کاربری اراضی فراهم می کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modification of the Palmer Drought Severity Index (PDSI) based on Atmosphere-Land Surface Interaction Scheme (ALSIS) in Karkheh River Basin

نویسندگان [English]

  • Somayeh Hejabi 1
  • Parviz Irannejad 2
  • Javad Bazrafshan 3
1 Ph.D. Student of Agrometeorology, Department of Irrigation and Reclamation, Faculty of Agricultural Engineering and Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
2 Department of Space Physics, Institute of Geophysics, University of Tehran, Tehran, Iran
3 Associate Professor, Department of Irrigation and Reclamation, Faculty of Agricultural Engineering and Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

In this study, the water balance component of the Palmer Drought Severity Index (PDSI) was replaced by the Atmosphere-Land Surface Interaction Scheme (ALSIS) and the modified Palmer Drought Severity Index (AL-PDSI) was compared with the self-calibrating version of Palmer Drought Severity Index (SC-PDSI). The evaluation of drought indices in Karkheh river basin for the period 1983-2011 reveals reporting more severe droughts for certain duration by the AL-PDSI in comparison with the SC-PDSI. The AL-PDSI can capture seasonal variations in relative frequency of droughts. Moreover, the relative frequency of mild, moderate and severe drought for the AL-PDSI is higher than that for the SC-PDSI. However, the AL-PDSI and SC-PDSI do not show a remarkable difference in terms of the correlation with vegetation and soil moisture variations. The more physical mechanism of AL-PDSI helps in more comprehensive understanding of drought characteristics and in studying the effects of climate and land use change scenarios on droughts.

کلیدواژه‌ها [English]

  • Palmer Drought Severity Index
  • Water-Energy Balance Model
  • Atmosphere-Land Surface Interaction Scheme
  • Karkheh river basin
Alley WM (1984) The Palmer drought severity index: limitations and assumptions. Journal of Climate and Applied Meteorology 23(7):1100-1109

Arnold JG, Fohrer N (1998) SWAT2000: current capabilities and research opportunities in applied watershed modelling. Hydrological Processes 19(3):563–572

Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment part I: Model development. Journal of the American Water Resources Association 34(1):73–89

Arshad S, Morid S, Mobasheri MR, Alikhani MA, Arshad S (2013) Monitoring and forecasting drought impact on dryland farming areas. International Journal of Climatology 33:2068-2081

Azadi S, Soltani Kopaei S, Faramarzi M, Soltani Tudeshki A, Pourmanafi S (2015) Evaluation of Palmer drought severity index in central Iran. Journal of Water and Soil Science 19(72):305-319 (In Persian)

Babaei H, Araghinejad S, Hoorfar A (2013) Developing a new method for spatial assessment of drought vulnerability (case study: Zayandeh Rood river basin in Iran). Water and Environment Journal 27:50-57

Blaney HF, Criddle WD (1962) Determining consumptive use and irrigation water requirements. US Department of Agriculture

Dai A (2011) Characteristics and trends in various forms of the Palmer drought severity index during 1900–2008. Journal of Geophysical Research: Atmospheres 116:D12115

Dai A, Trenberth KE, Qian T (2004) A global dataset of Palmer drought severity index for 1870-2002: Relationship with soil moisture and effects of surface warming. Journal of Hydrometeorology 5:1117-1130

Hansen M, DeFries R, Townshend JR, Sohlberg R (1998) UMD global land cover classification, 8 kilometers, 1.0. Department of Geography, University of Maryland, College Park, Maryland

Hejabi S, Bazrafshan J, Irannejad P, Araghinejad S, Ghader S (2017) Application of Atmosphere-Land Surface Interaction Scheme (ALSIS) in simulating the streamflow with emphasis on the spatial heterogeneity of land surface in sub-grid scale (Case study: Karkheh river basin). Journal of Agricultural Meteorology (Accepted for publication in the next issue) (In Persian)

Hobbins MT, Dai A, Roderick ML, Farquhar GD (2008) Revisiting the parameterization of potential evaporation as a driver of long‐term water balance trends. Geophysical Research Letters 35(12)

Horváth S, Szép IJ, Makra L, Mika J, Pajtók-Tari I, Utasi Z (2010) Effect of evapotranspiration parameterization on the Palmer drought severity index. Physics and Chemistry of the Earth 35(1):11-18

Irannejad P, Shao Y (1998) Description and validation of the atmosphere- land-surface interaction scheme (ALSIS) with HAPEX and Cabauw data. ‎ Global and Planetary Change 19:87-114

Ji L, Peters AJ (2003) Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sensing of Environment 87:85–98

Karamouz M, Nazif S, Ahmadi A (2013) Development of integrated drought evaluation and monitoring system: Case study of Aharchay River Basin. Journal of Hydrologic Engineering 18:897-910

Karamouz M, Rasouli K, Nazif S (2009) Development of a hybrid index for drought prediction: case study. Journal of Hydrologic Engineering 14:617-627

Karamouz M, Torabi S, Araghinejad S (2004) Analysis of hydrologic and agricultural droughts in central part of Iran. Journal of Hydrologic Engineering 9:402-414

Karl T, Knight RW (1985) Atlas of monthly Palmer hydrological drought indices (1931-1983) for the contiguous United States. National Climatic Data Center

Kendall SM (1975) Rank Correlation Methods. Griffin, Oxford, England

Liang X, Lettenmaier DP, Wood EF, Burges SJ (1994) A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research: Atmospheres 99(7):14415–14428

Mann HB (1945) Nonparametric tests against trend. Econometrica 13(3):245-259

Mishra AK, Singh VP (2010) A review of drought concepts. Journal of Hydrology 391(1):202-216

Monteith J (1965) Evaporation and environment. Symposia of the Society for Experimental Biology 19:205-234

Ojaghloo Shahabi S, Vazifedoust M, Ashrafzadeh A, Pirmoradian N, Keshavar M (2013) Assimilation of evapotranspiration maps derived from Modis satellite data into the Palmer distributed soil moisture model. Journal of Agricultural Meteorology 1(1):49-61 (In Persian)

Palmer WC (1965) Meteorological drought. US Department of Commerce, Weather Bureau Washington, DC, USA

Pereira LS, Rosa RD, Paulo AA (2007) Testing a modification of the Palmer drought severity index for Mediterranean environments. Methods and Tools for Drought Analysis and Management, Springer, pp.149-167

Pereira LS, Teodoro P, Rodrigues P, Teixeira J (2003) Irrigation scheduling simulation: the model ISAREG. Tools for drought mitigation in Mediterranean regions, Springer, pp.161-180

Qiu S (2013) Improving the Palmer drought severity index by incorporating snow and frozen ground. The University of North Dakota

Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng CJ, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bulletin of the American Meteorological Society 85:381

Saha S, Moorthi S, Pan HL, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D (2010) The NCEP climate forecast system reanalysis. ‎Bulletin of the American Meteorological Society 91(8):1015

Salter PJ, Goode JE (1967) Crop responses to water at different stages of growth. Commonwealth Agricultural Bureaux, Farnham Royal, UK

Shahbazi S (2014) Analysis and regional monitoring of droughts rom agrometeorological point of view using Palmer index in the west of Iran. Department of Irrigation and Reclamation, University of Tehran (In Persian)

Shahbazi S, Bazrafshan J, Irannejad P, Sohrabi T (2015) Palmer Drought Severity Index's calibration under the climatic conditions of arid and semiarid regions of the West and South West of Iran. Journal of Water and Soil Conservation 22(5):23-44 (In Persian)

Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491(7424):435-438

Teixeira J, Pereira L (1992) ISAREG, an irrigation scheduling model. International Commission on Irrigation & Drainage Bulletin 41(2):29-48

Thornthwaite CW (1948) An approach toward a rational classification of climate. Geography Review 38(1):55-94

van der Schrier G, Jones P, Briffa K (2011) The sensitivity of the PDSI to the Thornthwaite and Penman Monteith parameterizations for potential evapotranspiration. Journal of Geophysical Research: Atmospheres 116(D3)

Wells N, Goddard S, Hayes MJ (2004) A self-calibrating Palmer drought severity index. Journal of Climate 17:2335-2351

Wieder W, Boehnert J, Bonan G, Langseth M (2014) Regridded harmonized world soil database v1. 2. Data set. Available on-line [http://daac. ornl. gov], Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA

Xu J, Ren LL, Ruan XH, Liu XF, Yuan F (2012) Development of a physically based PDSI and its application for assessing the vegetation response to drought in northern China. Journal of Geophysical Research: Atmospheres 117(D8)

Yan D, Shi X, Yang Z, Li Y, Zhao K, Yuan Y (2013) Modified Palmer drought severity index based on distributed hydrological simulation. Mathematical Problems in Engineering 2013

Zhang B, Wu P, Zhao X, Wang Y, Gao X, Cao X (2013) A drought hazard assessment index based on the VIC–PDSI model and its application on the Loess Plateau, China. ‎ Theoretical and Applied Climatology 114(1):125-138

Zhu Z, Bi J, Pan Y, Ganguly S, Anav A, Xu L, Samanta A, Piao S, Nemani RR, Myneni RB (2013) Global data sets of vegetation leaf area index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the period 1981 to 2011. ‎Remote Sensing 5(2):927-948

Zoljoodi M, Didevarasl A (2013) Evaluation of spatial-temporal variability of drought events in Iran using Palmer drought severity index and its principal factors (through 1951-2005). Atmospheric and Climate Sciences 3(2):193-207