بررسی هیدروشیمیایی منابع آب سطحی و زیرزمینی دشت بستان با استفاده از تکنیک‌های آماری چندمتغیره

نوع مقاله: مقاله پژوهشی

نویسندگان

1 1- استاد گروه زمین‌شناسی دانشگاه شهید چمران اهواز

2 گروه اموزشی دانشکده علوم دانشگاه شهید چمران اهواز

3 گروه زمین شناسی دانشکده علوم زمین دانشگاه شهید چمران اهواز

چکیده

به منظور شناسایی عوامل اصلی تغییرات هیدروشیمیایی و بررسی فرآیندهای ژئوشیمی کنترل کننده منابع آب سطحی و زیرزمینی دشت بستان از نتایج آنالیز شیمیایی 35 نمونه آب در دو فصل خشک (تیر ماه 1395) و تر (فروردین ماه 1396) استفاده شده است. در این تحقیق، دو روش آماری چند متغیره تجزیه و تحلیل خوشه‌ای سلسله مراتبی (HCA) و تحلیل مؤلفه‌های اصلی (PCA)، برای طبقهبندی کیفی نمونه‌ها‌ی آب منطقه بکار گرفته شد. بر اساس مطالعات انجام شده از HCA، سه رخساره‌ی اصلی هیدروشیمی در دشت بستان شامل رخساره‌ی با شوری زیاد (گروه1: Na-Cl)، با شوری کمتر (گروه2: Ca-Na-SO4-Cl)، و رخساره حدواسط (گروه3: Na-Mg-Cl) مشاهده گردید. در روش PCA، اولین عامل 2/68 درصد و عامل‌های دوم و سوم به ترتیب 45/14 و 25/9 درصد از تغییرات را نشان می-دهند. نتایج این مطالعه به وضوح فوائد تکنیک‌های آماری چند متغیره را در ارزیابی هیدروشیمیایی منابع آب سطحی و زیرزمینی دشت مورد مطالعه نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Hydrochemical assessment of surface and ground water resources of Bostan plain using multivariate statistical techniques

نویسندگان [English]

  • Abul Hasan Anbari 2
  • Hadi Mohammadi 3
2 Department of Geology Earth Sciences faculty Shahid Chamran University of Ahvaz
3 Department of Geology Earth Sciences faculty Shahid Chamran University of Ahvaz
چکیده [English]

Hydrochemical analyzes of 35 water samples during two dry seasons (July 2016) and more (April 2017) have been used to identify, extract the main factors of the hydrochemical changes, and investigate the geochemical processes controlling the surface water and groundwater resources of Bostan plain. In this research, two multivariate statistical methods of hierarchical cluster analysis (HCA) and principal components analysis (PCA) were used to classify water quality samples of the region. According to studies conducted by HCA, there are three main hydrochemical facies in Bostan plains. Facies with higher salinity (group 1: Na-Cl), lower salinity facies (group 2: Ca-Na-SO4-Cl), intermediate facies (group 3: Na-Mg-Cl). In the analysis of the PCA, the plain resources. First factor of the three factors is 68.2% of the changes and the second and third factors are 14.45% and 9.25% of the changes, respectively. The results of this study clearly demonstrate the usefulness or benefits of multivariate statistical techniques in assessing the hydrochemical characteristics of surface and groundwater.

کلیدواژه‌ها [English]

  • Groundwater
  • Hydrochemistry
  • multivariate statistical methods
  • Facies
  • Bostan plain
Adams S, Titus R, Pietersen K, Tredoux G, Harris C (2001) Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo, South Africa. Journal of Hydrology 241(1):91-103

Amangabara G T, Ejenma E (2012) Groundwater quality assessment of Yenagoa and environs Bayelsa State, Nigeria between 2010 and 2011. Resour Environ 2(2):20–29

Anazawa K, Ohmori H (2005) The hydrochemistry of surface waters in Andesitic Volcanic area Norikura volcano central Japan. Chemosphere 59(5):605-615

Belkhiri L, Boudoukha A, Mouni L (2011) A multivariate statistical analysis of groundwater chemistry data. International Journal of Environmental Research 5(2):537-544

Bouwer H (1978) Groundwater Hydrology. McGraw-Hill USA, 470p

Brown C E (1998) Applied multivariate statistics in geohydrology and related sciences, Springer, New York

Cloutier V, Lefebvre R, Therrien R, Savard M M (2008) Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. Journal of Hydrology 353(3):294-313

Davis J C (1986) Statistics and data analysis in geology. John Wiley & Sons Inc New York, 646p

Dinka M O, Loiskandlb W, Ndaambukic J M (2015) Hydrochemical characterization of various surface water and groundwater resources available in Matahara areas, Fantalle Woreda of Oromiya region. Journal of Hydrology 3:444-456

Environmental Protection Agency (EPA) (2006) Final revisions to the national ambient air quality standards for particulate pollution. Environmental Protection Agency, United States of America

Farnham I M, Stetzenbach K J, Singh A K, Johannesson K H (2000) Deciphering groundwater flow systems in Oasis Valley, Nevada, using trace element chemistry, multivariate statistics and geographical information system. Mathematical Geology 32(8):943-68

Freeze R A, Cherry J A (1979) Groundwater. Prentice-Hall Inc New Jersey, pp 604

Guler C, Thyne G D, McCray J E, Turner A K (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeology Journal 10(4):455-74

Habibi A (2007) Applied training book on SPSS software. Eelectronic Ppublication Pars Manager, pp 160-166

Isa N M, Aris A Z, Lim W Y, Sulaiman W N A W, Praveena S M (2014) Evaluation of heavy metal contamination in groundwater samples from Kapas Island, Terengganu, Malaysia. Arabian Journal of Geosciences 7(3):1087-1100

Jalali L, Asghari Moghaddam A (2012) Determination of hydrogeochemical status and salinity trend in aquifer of Khoy plain using statistical and hydrologic methods. Ecological Journal 39(2):113-122

Javanmard Z, Asghari Moghadam A (2016) Using statistical and hydrochemical models in qualitative analysis of groundwater resources (Case study: East Azarbayejan Detroit). Water and soil knowledge 25(2):31-50

Jayakumar R, Siraz L (1997) Factor analysis in hydrogeochemistry of coastal aquifers–a preliminary study. Environmental Geology 31(3-4):174-177

Khazaie A (2001) The impact of urban expansion on groundwater quality in Zahedan. Journal of Water and Sewage 31:37-39

Laar C, Akiti T T, Brimah A K, Fianko J R, Osae S, Osei J (2011) Hydrochemistry and isotopic composition of the Sakumo Ramsar site. Research Journal of Environmental and Earth Sciences 3(2):146-152

Li W, Wang M Y, Liu L Y, Yan Y (2015) Assessment of long-term evolution of groundwater hydrochemical characteristics using multiple approaches: A case study in Cangzhou northern China. Water 7(3):1109-1128

Mahdavi Nia M, Nick Ravesh Sh (2002) Determination of water pollution distribution in Damghan city to nitrate. Journal of Water and Wastewater 43:60–61 (In Persian)

Mahmoudi M, Nadiri A, Asghari Moghadam A, Pourakbar M, Moradian Harhatzadeh (2016) Survey of water resources of Shiramin plain using multivariate statistical methods. Water and Soil Conservation Researches Journal 23(3)

Mandel S and Shiften Z L (1981) Groundwater resources investigation and development, Academic Press Pub, pp 188-200

Melloul A, Collin M (1992) The ‘principal components’ statistical method as a complementary approach to geochemical methods in water quality factor identification; application to the coastal plain aquifer of Israel. Journal of Hydrology 140(1-4):49-73

Mokhtari H, Espahbod M R (2009) Hydrodynamic parameters of water potential of Varamin plain with regard to salinity gradient changes. Quarterly Journal of Earth 4(2)

Mtoni Y, Mjemah I C, Bakundukize C, van Camp M, Martens K, Walraevens K (2013) Saltwater intrusion and nitrate pollution in the coastal aquifer of Dares Salaam, Tanzania. Environ Earth Sci 70:1091–1111

Nosrati K, Derfishi Kh, Gharehchahi S, Rahimi Kh (2011) Surface water quality assessment of the Haraz-Ghareh Souz basin using multivariate statistical techniques. Knowledge of Earth science 2(5):41-55

Nowshadi M, Azar Peykan A, and Noah-Gera A (2009) Evaluation of Bandar Abbas drinking water quality using cluster analysis and factor analysis. Iran- Water Resources Research 3(5):79-82 (In Persian)

Pradhan J K, Kumar S (2014) Informal e-waste recycling: environmental risk assessment of heavy metal contamination in Mandoli industrial area Delhi India. Environmental Science and Pollution Research 1; 21(13):7913-7928

Shrestha S, Kazama F (2007) Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Journal of Environmental Modeling & Software 22(4):464-475

Stat Soft Inc (2004) STATISTICA (Data Analysis Software System), Version 6

Steinhorst RK and Williams RE (1985) Discrimination of groundwater sources using cluster analysis, MANOVA, canonical analysis and discriminant analysis. Water Resources Research 21(8):1149-1156

Stetzenbach K J, Hodge V F, Guo C, Farnham I M, Johannesson K H (2001) Geochemical and statistical evidence of deep carbonate groundwater within averlying volcanic rock aquifers/ aquitards of southern Neveda, USA. Journal of Hydrology 243(3):254-271

Usunoff E J, Guzma´n-Guzma´n A (1989) Multivariate analysis in hydrochemistry: an example of the use of factor and correspondence analyses. Ground Water 27(1):27-34

World Health Organization (WHO) (2012) UN-water global analysis and assessment of sanitation and drinking- water; the challenge of extending and sustaining services. WHO: Geneva Switzerland

Wu J, Li P, Qian H, Duan Z & Zhang X (2014) Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: a case study in Laoheba phosphorite mine in Sichuan, China. Arabian Journal of Geosciences 7(10):3973-3982

Yidana S M, Ophori D, Banoeng-Yakubo B (2007) Hydrochemical evaluation of the Voltaian system-the Afram Plains area, Ghana. Journal of Environmental Management 88(4):697-707