ارزیابی مدل DWB و اصلاح آن برای برآورد مولفه‌های بیلان آب در مقیاس سال-حوضه(مطالعه موردی: محدوده مطالعاتی رخ و نیشابور)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آبیاری و زهکشی دانشگاه فردوسی مشهد

2 استاد دانشکده کشاورزی، دانشگاه فردوسی مشهد

3 دانشیار دانشکده کشاورزی، دانشگاه فردوسی مشهد

4 استاد گروه مهندسی آب دانشکده کشاورزی، دانشگاه فردوسی مشهد

5 استاد گروه مهندسی آب دانشکده عمران، دانشگاه فردوسی مشهد

6 استادیار گروه مهندسی آب دانشکده عمران، دانشگاه تهران

چکیده

هدف اصلی از پژوهش حاضر اصلاح، توسعه و ارزیابی مدل دینامیکی بیلان آب «DWB »، با رویکرد کاربرد ضرایب تناسبی «به نوعی قیود مبتنی بر واقعیت‌های هیدرولوژیکی» و اعمال میزان برداشت از منابع آب سطحی و زیرزمینی به همراه واسنجی و تحلیل عدم قطعیت پارامترها آن، است. نتایج نشان داد که به طورکلی نمی‌توان یک مجموعه پارامتر بهینه برای واسنجی مدل DWB و SDDWB (شکل توسعه یافته) بدست آورد و اغلب پارامترهای این مدل‌ها برای هر دو محدوده مطالعاتی (رخ و نیشابور) در واسنجی مدل از قابلیت تشخیص‌پذیری پایینی برخوردار هستند. مقدار متوسط خطای کلی بیلان سطحی مدل DWB، بیانگر عملکرد ضعیف مدل بوده و بین مقادیر تغییرات حجم آبخوان محاسباتی و مشاهداتی اختلاف معنادار وجود دارد که دلیل اصلی آن عدم اعمال اثرات برداشت از منابع آب زیرزمینی در مدل DWB است. بررسی نتایج عملکرد مدل SDDWB نشان داد که مقدار نسبی شاخص‌های PRMSE برای هر دو محدوده مطالعاتی، کمتر از 10 درصد برآورد شده که نشان دهنده دقت قابل قبول مدل SDDWB می‌باشد. بطور کلی نتایج بیانگر آن است که میزان خطای کلی تخمین مولفه‌های معادله‌ی بیلان آب سطحی و زیرزمینی با استفاده از مدل SDDWB در مقایسه با مدل DWB بسیار کمتر بوده و این امر بیانگر تاثیر مثبت اصلاحات و توسعه صورت گرفته بر روی مدل DWB می‌باشد.
واژه های کلیدی: بیلان آب،ضرایب تناسبی، SDDWB، عدم قطعیت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of DWB model and its correction for estimation of water balance components in Annual - watershed scale (Case study: Neishaboor and Rokh watershed)

نویسندگان [English]

  • Saeed Emamifar 1
  • Kamran Davari 2
  • Hossein Ansari 3
  • Bijan Ghahraman 4
  • Seyed Mahmoud Hosseini 5
  • Mohsen Naseri 6
1 Irrigation and Drainage PhD student at Ferdowsi University of Mashhad
2 Professor, Department of Water Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad
3 Associate Professor, Faculty of Agriculture, Ferdowsi University of Mashhad
4 Professor, Department of Water Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad
5 Professor, Department of Water Engineering, Faculty of Engineering, Ferdowsi University of Mashhad
6 Department of Civil Engineering Faculty, Tehran University
چکیده [English]

The main purpose of this study is reform, development and evaluation of dynamic water balance model “DWB” with the approach of the proportional coefficients “To the kind of hydrological reality-based constraints” and acts the withdrawal of groundwater and surface water resources along with calibration and uncertainty analysis its parameter. The results showed that generally cannot obtain a set of optimal parameters for calibration SDDWB and DWB model and often the parameters of the models are low detection capability for model calibration in both study area (Neyshabur and Rokh watershed). The average total amount of surface water balance error DWB model for Neyshabur and Rokh watershed is Respectively -9.74 and -69.63 Cubic meters that is Represented poor performance model. there is a significant difference between Aquifer volume changes observed and simulated by DWB That the main reason is the lack beneficial effects of groundwater withdrawals in this model. Reviews performance results showed that the relative PRMSE index of the SDDWB model for both the study areas less than 10 percent, indicating acceptable accuracy SDDWB model. In general, the results indicate that the overall error rate of surface and groundwater discharge equation components using SDDWB model is much lower than the DWB model, which indicates the positive impact reform and development on the DWB model.
Keywords: Water balance, Proportionality coefficient, SDDWB, Uncertainty

کلیدواژه‌ها [English]

  • Water balance
  • Proportionality coefficient
  • SDDWB
  • Uncertainty
Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. In FAO irrigation and drainage paper, no 56, FAO, Roma, Italy
Beven KJ, Binley A (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrological Processes 6(3):272-228
Bromley J, Brouwer J, Barker AR, Gaze SR, Valentin C (1997) The role of surface water redistribution in an area of patterned vegetation in a semiarid environment south-west Niger. Journal of Hydrology 198
Budyko M (1974) Climate and Life. 508, Academic, San Diego, Calif
Domenico PA and Schwartz WW (1990) Physical and Chemical Hydrogeology. John Wiley & Sons, New York, 824 pp
Domingo F, Villagarc’ L, Boer MM, Alados-Arboledas L, Puigdefa’bregasa J (2001) Evaluating the long-term water balance of arid zone stream bed vegetation using evapotranspiration modelling and hillslope runoff measurements. Journal of Hydrology 243:17-30
Dunne T, Black R (1970) Partial area contributions to storm runoff in a small New England watershed. Water Resources Research 6(5):1296-1311
Emamifar S, Davari K, Ansari H, Ghahraman B, Hosseini SM, Nasseri M (2016a) Estimation of soil moisture properties as input variables of hydrological modeling using small scale soil maps. Journal of Iran Water and Irrigation 23(6):49-65 (In Persian)
Emamifar S, Davari K, Ansari H, Ghahraman B, Hosseini SM, Nasseri M (2016b) DWB uncertainty analysis using GLUE (Case Study: Watershed Andaraab and Gharoob roman). Journal of Soil and Water Resources Conservation 6(1):125-145 (In Persian)
Fang Z, Zhang L, and Xu  Z (2009) Effects of vegetation cover change on stream flow at a range of spatial scales. 18th World IMACS/MODSIM Congress cairns Australia 13-17 July
Fetter CW (1994) Applied Hydrogeology. 3rd ed, Macmillan, New York, 691 pp
Greve P, Gudmundsson L, Orlowsky B, Seneviratne S I (2016) A two-parameter Budyko function to represent conditions under which evapotranspiration exceeds precipitation. Hydrology and Earth System Sciences 20(6):2195–2205, DOI:10.5194/hess-20-2195-2016
Han S, Hu H (2012) Spatial variations and temporal changes in potential evaporation in the Tarim Basin northwest China (1960-2006) influenced by irrigation? Hydrol. Process 26:3041-3051
Hargreaves GH, Samani ZA (1982) Estimating potential evapo-ration. J, Irrig, Drain, Eng.-ASCE, 108(3):225-230, http://modis/gsfc/nasa/gov
Izadi A (2012) Application and evaluation of an integrated development model for surface water in the Neyshabur basin. Ph.D, Thesis, Ferdowsi University, Faculty of Agriculture, Department of Water Engineering, 227 p (In Persian)
Jackson RB, Carpenter SR, Dahm CN, McKnight DM, Naiman RJ, Postel SL, Running SW (2001) Water in a changing world. Ecological Application 11:1027-1045
Khazaei B, Hosseini SM (2015) Improving the performance of water balance equation using fuzzy logic approach. Journal of Hydrology 524:538-548
Khorasan Razavi Regional Water Company (2011) Report of the consolidation of water resources studies in the desert basin. Volume III, Analysis of statistics and information and water balance, Section V Combined studies and water bill, Appendix No, 38, Water Balance in the Neyshabur Studies Area (In Persian)
Liu YB, Gebremeskel S, De Smedt F, Hoffmann L and Pfister (2003) A diffusive transport approach for flow routing in GISbased flood modeling. Journal of Hydrology 283, 1-4:91-106
Mein RG, Brown BM (1978) Sensitivity of optimized parameters in watershed models. Water Resources Research 14:299-303
Melesse AM and Shih SF (2002) Spatially distributed storm runoff depth estimation using landsat image and GIS. Coputers and Electronics in Agricultuer 37:173-183
Mianabadi A (2016) Annual evapotranspiration forecasting in dry areas watersheds with drought index (study dated catchment Neyshabur). Ph.D. Thesis, Ferdowsi University, Faculty of Agriculture, Department of Water Engineering, 183 p
Mohammad AG, Adam MA (2010) The impact of vegetative cover type on runoff and soil erosion under different land uses Catena model. Journal of Hydrology, doi:10.1016/j.catena.2010.01.008
Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part1: A discussion of principles. Journal of Hydrology, 10:282-290
Portoghese I, Uricchio V, Vurro M (2005) A GIS tool for hydrogeological water balance evaluation on a regional scale in semi-arid environments. Computers & geosciences 31(1):15-27
Rahnama B, Nasseri M, Zohrai B (2012) Optimal structure detection and uncertainty analysis of monthly water balance model. Iranian Water Research., Eighth, No, 14:77-86 (In Persian)
Razavi S (2013) Development of quasi-distributive model of balance (QDWB) and its evaluation in the Rokh-Neyshabur study area. M.Sc. thesis in Ferdowsi University, Faculty of Agriculture, Department of Water Engineering, 114 p (In Persian)
Rimal BK and Lal R (2009) Soil and carbon losses from five different land management areas under simulated rainfall. Soil & Tillage Research 106:62–70
Soleimani FB, Kolahchi A, Arsham A (2017) Investigation of climate change effect on groundwater balance and level in Ramhormoz plain.Extension and Development of  Watershed Management 17(5):19-28 (In Persian)
Tekleab S, Uhlenbrook S, Mohamed Y, Savenije HHG, Temesgen M , Wenninger J  (2011) Water balance modeling of Upper Blue Nile catchments using a top-down approach. Hydrol Earth Syst Sci. 15:2179-2193
Vrugt JA, Braak CJFT, Diks CGH, Robinson BA, Hyman JM, Higdon D (2009) Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. International Journal of Nonlinear Sciences and Numerical Simulation 10:273-290
Wang S, Kang S, Zhang L, Li F (2008) Modelling hydrological response to different land-use and climate change scenarios in the Zamu River basin of northwest China. Journal of Hydrological Processes 22:2502-2510
Weiskel PK, Vogel RM, Steeves PA, Zarriello PJ, DeSimone LA, Ries KGR III (2007) Water use regimes: characterizing direct human interaction with hydrologic systems. Water Resources Research 43:W04402. DOI: 04410.01029/02006WR005062
Zhang L, Potter N, Hickel K, Zhang Y, Shao Q (2008) Water balance modeling over variable time scales based on the Budyko framework-Model development and testing. Journal of Hydrology 360(1):117-131
Zhang LK, Hickel WR, Dawes FHS, Chiew AW, Western and Briggs PR (2004) A rational function approach for estimating mean annual evapotranspiration. Water Resources Research, 40, W02502, doi:10.1029/2003WR0027101