مقایسة تبخیر- تعرق واقعی محصول MOD16 و شبیه‌سازی‌شده توسط مدل SWAP (مطالعة موردی: مزارع تحت کشت ذرت در استان قزوین)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش‌آموختة کارشناسی ارشد آبیاری و زهکشی، گروه مهندسی آب دانشگاه گیلان

2 استادیار گروه مهندسی آب دانشگاه گیلان

3 دانشیار گروه مهندسی آب دانشگاه گیلان

چکیده

تبخیر- تعرق واقعی از اجزای مهم محاسبات بیلان آب است که امروزه امکان برآورد آن با استفاده از فناوری سنجش از دور فراهم شده است. داده‌های تبخیر- تعرق واقعی MOD16 با استفاده از تصاویر حاصل از سنجندة MODIS تولید می‌شوند و قدرت تفکیک مکانی آنها یک کیلومتر است. در این مطالعه، تبخیر- تعرق واقعی MOD16 با تبخیر- تعرق واقعی برآورد شده توسط مدل SWAP مقایسه شده است. با استفاده از داده‌های اندازه‌گیری‌شده از رطوبت خاک در دو مزرعة تحت کشت ذرت با مساحت‌های 9/38 و 6/45 هکتار در استان قزوین در طول فصل رشد، مدل SWAP مورد واسنجی قرار گرفت. مقدار متوسط RMSE برای دو مزرعة مورد مطالعه، برابر با 026/0 و 025/0 به دست آمد. با درنظرگرفتن تبخیر- تعرق واقعی برآوردشده توسط مدل SWAP به‌عنوان مبنا، تبخیر- تعرق واقعی MOD16 مورد ارزیابی قرار گرفت. در این ارزیابی، مقدار RMSE در دو مزرعة مورد مطالعه به‌ترتیب برابر با 46/1 و 94/1 میلی‌متر در روز به دست آمد. همچنین مقدار r2 نیز به‌ترتیب برابر با 86/0 و 87/0 محاسبه شد. نتایج مطالعة حاضر نشان داد در صورت عدم دسترسی به داده‌های اندازه‌گیری‌شده از تبخیر- تعرق واقعی، محصول MOD16 را می‌توان به عنوان جایگزین به کار برد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparing actual evapotranspiration rates derived from MOD16 product and simulated using SWAP model (Case study: Corn fields in Qazvin Province)

نویسندگان [English]

  • Bahare Marbut 1
  • Afshin Ashrafzadeh 2
  • Majid Vazifedoust 2
  • Mohammadreza Khaledian 3
1 M.Sc. Graduated in Irrigation and Drainage, Department of Water Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
2 Assistant Professor of Water Resources, Department of Water Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
3 Associate Professor of Irrigation and Drainage, Department of Water Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
چکیده [English]

Nowadays, evapotranspiration, which is an important component of water balance calculations, can be estimated using the technology of remote sensing. MOD16 actual evapotranspiration data are produced using the MODIS sensor imageries and have a spatial resolution of 1 Km. In the present study, MOD16 actual evapotranspiration data are compared with the actual evapotranspiration estimated using SWAP model. Using the measured soil moisture content data during the growing season in two 38.9 and 45.6 ha corn fields located in Qazvin Province, SWAP model was calibrated. The average RMSE values in the two fields under study were, respectively, 0.026 and 0.025. Considering the actual evapotranspiration estimated by the SWAP model as the evaluation basis, the MOD16 data were assessed. In this assessment, the RMSE values in the two fields under study were obtained, respectively, 1.46 and 1.94 mm/day. Also, the r2 values were calculated 0.86 and 0.87. The results of the present study suggest that MOD16 product can be effectively used when the measured data of evapotranspiration are not available.

کلیدواژه‌ها [English]

  • Actual Evapotranspiration
  • MOD16
  • SWAP mode
  • Remote Sensing

Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, Food and Agriculture Organization, Rome

Asadzadeh F, Kaki M, Shakiba S (2017) Trends analysis of reference evaporation in the synoptic sites of Kurdistan province using Spearman’s test. Iran-Water Resources Research 13(1):216–222 (In Persian)

Badiehneshin A, Noory H, Vazifedoust M (2015) Improving crop yield estimation through SWAP model using satellite data. Iranian Journal of Soil and Water Research 45(4):379–388 (In Persian)

Baldocchi D, Falge E, Gu LH, Olson R, Hollinger D, et al. (2001) FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society 82:2415–2434

Bastiaanssen WGM, Ahmad MD, Chemin Y (2002) Satellite surveillance of evaporative depletion across the Indus Basin. Water Resources Research, 38(12):9/1–9/9

Bastiaanssen WGM, Pelgrum H, Wang J, Ma Y, Moreno JF, Roerink GJ, van der Wal T (1998a) A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. Journal of Hydrology 212–213:198–212

Bastiaanssen WGM, Pelgrum H, Wang J, Ma Y, Moreno JF, Roerink GJ, van Der Wal T (1998b) A remote sensing surface energy balance algorithm for land (SEBAL): 2. Validation. Journal of Hydrology 212–213:213–229

Bennett SJ, Bishop TFA, Vervoort RW (2013) Using SWAP to quantify space and time related uncertainty in deep drainage model estimates: A case study from northern NSW, Australia. Agricultural Water Management 130:142–153

Boden TA, Krassovski M, Yang B (2013) The AmeriFlux data activity and data system: an evolving collection of data management techniques, tools, products and services. Geoscientific Instrumentation, Methods and Data Systems, 2:165–176

Bonfante A, Basilie A, Acutis M, De Mascellis R, Manna P, Perego A, Terribile F (2010) SWAP, CropSyst and MACRO comparison in two contrasting soils cropped with maize in Northern Italy. Agricultural Water Management 97(7):1051–1062

Droogers P, Immerzeel WW, Lorite IJ (2010) Estimating actual irrigation application by remotely sensed evapotranspiration observations. Agricultural Water Management 97(9):1351–1359

Fallah M (2014) Estimation of soil moisture using the agrohydrological SWAP model and its comparison with field and satellite soil moisture data. M.Sc. Thesis, University of Guilan, Rasht, Iran (In Persian)

Ghilain N, Arboleda A, Gellens-Meulenberghs F (2011) Evapotranspiration modeling at large scale using near-real time MSG SEVIRI derived data. Hydrology and Earth System Sciences 15(3):771–786

Ghilain N, Arboleda A, Sepulcre-Canto G, Batelaan O, Ardo J, Gellens-Meulenberghs F (2012) Improving evapotranspiration in a land surface model using biophysical variables derived from MSG/SEVIRI satellite. Hydrology and Earth System Sciences 16(8):2567–2583

Ghilain N, De Roo F, Gellens-Meulenberghs F (2014) Evapotranspiration monitoring with Meteosat Second Generation satellites: Improvement opportunities from moderate spatial resolution satellites for vegetation. International Journal of Remote Sensing 35(7):2654–2670

Hassanli M, Ebrahimian H, Mohammadi E, Rahimi A, Shokouhi A (2016) Simulating maize yields when irrigating with saline water, using the AquaCrop, SALTMED, and SWAP models. Agricultural Water Management 176:91–99

Hu G, Jia L, Menenti M (2015) Comparison of MOD16 and LSA-SAF MSG evapotranspiration products over Europe for 2011. Remote Sensing of Environment 156:510–526

Jamieson PD, Porter JR, Wilson DR (1991) A test of the computer simulationmodel ARC WHEAT1 on wheat crops grown in New Zealand. Field CropsResearch 27:337–350

Kim HW, Hwang K, Mu Q, Lee SO, Choi M (2012) Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia. KSCE Journal of Civil Engineering 16(2):229–238

Kroes JG, Wesseling JG, Van Dam JC (2000) Integrated modelling of the soil–water–atmosphere–plant system using the model SWAP 2.0: An overview of theory and an application. Hydrological Processes 14(11–12):1993–2002

Kumar P, Sarangi A, Singh DK, Parihar SS, Sahoo RN (2015) Simulation of salt dynamics in the root zone and yield of wheat crop under irrigated saline regimes using SWAP model. Agricultural Water Management 148:72–83

Liu SM, Xu ZW, Zhu ZL, Jia ZZ, Zhu MJ (2013) Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. Journal of Hydrology 487:24–38

Ma Y, Feng S, Song X (2015) Evaluation of optimal irrigation scheduling and groundwater recharge at representative sites in the North China Plain with SWAP model and field experiments. Computers and Electronics in Agriculture 116:125–136

Mizoguchi Y, Hirata R, Kobayashi Y, Satoko Y (2008) Introduction to the site information on ASiaFlux website and overview of tower flux observation sites in Asia. AsiaFlux Newsletter 26:1–4

Moradi F, Kamali Gh, Vazifedoust M (2016) Evaluation of potential evapotranspiration from MODIS Product using synoptic stations of Zanjan Province. Journal of Climate Research 1394(23):39–48 (In Persian)

Mu Q, Heinsch FA, Zhao M, Running SW (2007) Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment 111(4):519–536

Mu Q, Zhao M, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment 115(8):1781–1800

Mualem Y (1976) A new model predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research 12:513–522

Noory H, Van Der Zee SEATM, Liaghat AM, Parsinejad M, van Dam JC (2011) Distributed agro-hydrological modeling with SWAP to improve water and salt management of the Voshmgir Irrigation and Drainage Network in Northern Iran. Agricultural Water Management 98(6):1062–1070

Ramezani Khojeen A, Kheirkhah Zarkesh MM, Daneshkar Arasteh P, Moridi A, Ali Mohammadi R (2016) Sensitivity analysis of calculated evapotranspiration using daily energy balance model and comparing it with SEBAL model. Iran-Water Resources Research 12(1):18–28 (In Persian)

Shabani A, Sepaskhah AR, Bahrami M, Razzaghi F (2017) Combined application of artificial neural network and computational methods to estimate the reference evapotranspiration. Iran-Water Resources Research 13(1):152–162 (In Persian)

Singh UK, Ren L, Kang S (2010) Simulation of soil water in space and time using an agro-hydrological model and remote sensing techniques. Agricultural Water Management 97(8):1210–1220

Su Z (2002) The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences 6(1):85–99

Sun Z, Wei B, Su W, Shen W, Wang C, You D, Liu Z (2011) Evapotranspiration estimation based on the SEBAL model in the Nansi Lake Wetland of China. Mathematical and Computer Modelling 54(3–4):1086–1092

Trezza R (2002) Evapotranspiration using a satellite-based surface energy balance with standardized ground control, PhD Dissertation, Utah State University, 317p

Valentini R, Matteucci G, Dolman AJ, Schulze ED, Rebmann C, et al. (2000) Respiration as the main determinant of 30 carbon balance in European forests. Nature 404:861–865

van Genuchten MTh (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44:892–898

Velpuri NM, Senay GB, Singh RK, Bohms S, Verdin JP (2013) A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET. Remote Sensing of Environment 139:35–49

Zare Abyaneh H, Farokhi E, Vazifehdoust M, Azhdari K (2011) Evaluation of the SWAP model to estimate the distribution pattern of soil moisture under drip irrigation management.  Journal of Water and Soil 24(6):1197–1209 (In Persian)