برآورد توزیع مکانی و زمانی تغذیه با استفاده از مدل توزیعی PRMS: مطالعه موردی دشت نیشابور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری/ گروه علوم و مهندسی آب، دانشگاه فردوسی مشهد.

2 استاد /گروه علوم و مهندسی آب، دانشگاه فردوسی مشهد.

3 دانشیار /گروه علوم و مهندسی آب، دانشگاه فردوسی مشهد.

4 محقق /دوره پسادکتری، مرکز تحقیقات آب دانشگاه سلطان قابوس، مسقط، عمان.

چکیده

در این تحقیق، توزیع مکانی تغذیه ماهانه در دشت نیشابور توسط مدل PRMS برآورد گردید. بدین منظور در ابتدا حساسیت‌سنجی مدل PRMS نشان داد که مؤثرترین پارامترهای موثر بر بیلان در این منطقه، تبخیروتعرق، جریان ترجیحی، رطوبت خاک و سطح مشارکت کننده در رواناب می‌باشند. پس از تحلیل حساسیت، واسنجی این مدل توسط نرم‌افزار PEST و با توجه به داده‌های رواناب ایستگاه‌های هیدرومتری و همچنین تبخیروتعرق واقعی (ETEns1.0) برای مدت هفت سال (1381-1388) انجام گرفت. صحت‌سنجی مدل PRMS برای مدت دو سال (1388-1390) صورت پذیرفت. واسنجی مدل بر اساس دو مؤلفه اصلی بیلان، سبب افزایش اطمینان از مقادیر تغذیه به‌دست آمده توسط مدل PRMS گردید. نتایج نشان داد تبخیر و تعرق که 87% از مجموع بارش و آبیاری را شامل می‌شد، مهمترین مؤلفه بیلان در منطقه می‌باشد و پس از آن، تغذیه با اختصاص 5/12% از حجم کلی بارندگی و آبیاری، قرار دارد. مدل‌سازی PRMS نشان می‌دهد که تغذیه آبخوان دشت نیشابور به‌طور متوسط سالانه 295 میلیون مترمکعب بوده که عمدتاً مربوط به مناطق کوهپایه‌ای و اراضی فاریاب می‌باشد. این مقدار تغذیه از آبان تا اردیبهشت ماه اتفاق می‌افتد و در ماه‌های گرم سال به علت بالا بودن میزان تبخیر و تعرق و کمبود رطوبت ناحیه ریشه، تغذیه ناچیز است.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of the Recharge spatiotemporal pattern by Distribute PRMS model (Case study: Neishaboor watershed)

نویسندگان [English]

  • F. Nazarieh 1
  • H. Ansari 2
  • A.N. Ziaei 3
  • K. Davari 2
  • A.A Izadi 4
1 PhD Student, Water Science and Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran.
2 Professor, Water Science and Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran.
3 Associate Professor, Water Science and Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran.
4 Post-doctoral Researcher, Water Research Center, Sultan Qaboos University, Muscat, Oman.
چکیده [English]

In this study, distributed Precipitation-Runoff-Modeling-System (PRMS) was used to estimate the spatiotemporal pattern of recharge in monthly time step. To this regard, first, a sensitivity analysis of PRMS model illustrated that the most effective parameters that control hydrologic budget components in the study area are evapotranspiration, preferential flow density, water-holding capacity of soil zone and contributing area in the runoff. After performing the sensitivity analysis, calibration of the PRMS was done using PEST, regarding runoff in hydrometric stations and actual evapotranspiration (ETEns1.0). the Model Calibration and validation period were 7 years (2002-2009) and 2 years (2009-2011), respectively. PRMS calibration based on the two components of the hydrologic budget (runoff and actual ET) led to increase in reliability of calculated recharge. The results revealed that actual ET which had 87 percent of total rainfall and irrigation volume, was the most important component of the hydrologic budget ) while the second one was recharge, which was 12.5% of total rainfall and irrigation volume. The PRMS simulation showed that annually 295 MCM water enters to the aquifer from the surface as recharge, which most of it occurs in mountain foothill and irrigated areas. This recharge happens from November until the following May. Thus, there is no recharge during warm months due to the high amount of evapotranspiration and soil water deficit.

کلیدواژه‌ها [English]

  • Groundwater recharge
  • spatiotemporal pattern
  • PRMS
  • Neishaboor watershed
Ahmadi T, Ziaei AN, Davari K, Rasoulzadeh A, Faridhoseini A, Izadi A (2012) Estimation of groundwater recharge using various methods in Neishaboor Plain, Iran. in, 5th international groundwater symposium, Kuwait
Ahmadi T, Ziaei AN, Rasoulzadeh A, Davary K, Esmaili K, Izady A (2015) Mapping groundwater recharge areas using CRD and RIB methods in the semi-arid Neishaboor Plain, Iran. Arabian Journal of Geosciences 8(5):2921-2935
Alizadeh A, Izadi A, Davari K, Ziaei AN, Akhavan S, Shafiee M (2013) Estimation of actual evapotranspiration at regional–annual scale using SWAT. Intervational SWAT confrance: July 15-19,Toulous France, 1-14
Barth C, Krause P, Boyle D, Markstrom S (2007) Hydrological modeling of a groundwater dominated watershed using a loosely coupled modeling approach. in, International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand Inc. pp.601-607
Cherkauer DS (2004) Quantifying ground water recharge at multiple scales using PRMS and GIS. Ground Water 42(1):97-110
Ely DM (2006) Analysis of sensitivity of simulated recharge to selected parameters for seven watersheds modeled using the precipitation-runoff modeling system. US Geological Survey Scientific Investigations Report, 2006-5041 pp. 21
Fang L, Liu C, Qin G, Zhang B, Liu T (2015) Application of the PRMS model in the Zhenjiangguan watershed in the Upper Minjiang River basin. Proceedings of the International Association of Hydrological Sciences 368:209-214
Fulton JW, Risser DW, Regan RS, Walker JF, Hunt RJ, Niswonger RG, Hoffman SA, Markstrom S (2015) Water-budgets and recharge-area simulations for the Spring Creek and Nittany Creek Basins and parts of the Spruce Creek Basin. Centre and Huntingdon Counties, Pennsylvania, Water Years 2000–06, US Geological Survey
Hay LE, Leavesley GH, Clark MP, Markstrom SL, Viger RJ, Umemoto M (2006) Step wise, multiple objective calibration of a hydrologic model for a snowmelt dominated basin1. Wiley Online Library
Hill MC (1998) Methods and guidelines for effective model calibration US Geological Survey Denver, CO, USA
Hill MC, Tiedeman CR (2006) Effective groundwater model calibration: with analysis of data, sensitivities, predictions, and uncertainty. John Wiley & Sons
Hunt RJ, Westenbroek SM, Walker JF, Selbig WR, Regan RS, Leaf AT, Saad DA (2016) Simulation of climate change effects on streamflow, groundwater, and stream temperature using GSFLOW and SNTEMP in the Black Earth Creek Watershed, Wisconsin. Scientific Investigations ReportReston, VA.pp.1-117
Iran Ministry of Energy (2010) Report  of extended ban on the exploitation of groundwater resources development - Neishaboor Plain. pp.69 (In Persian)
Izady A, Davary K, Alizadeh A, Ziaei A, Akhavan S, Alipoor A, Joodavi A, Brusseau M (2015) Groundwater conceptualization and modeling using distributed SWAT-based recharge for the semi-arid agricultural Neishaboor plain, Iran. Hydrogeology Journal 23(1):47-68
Lake C (2013) Simulation of climate-change effects on streamflow, lake water budgets, and stream temperature using GSFLOW and SNTEMP, Trout Lake Watershed, Wisconsin
Lappala EG, Healy RW, Weeks EP (1987) Documentation of computer program VS2D to solve the equations of fluid flow in variably saturated porous media. Department of the Interior, US Geological Survey
Leavesley GH, Lichty R, Thoutman B, Saindon L (1983) Precipitation-runoff modeling system: User's manual USGS Washington, DC
Markstrom SL, Niswonger RG, Regan RS, Prudic DE, Barlow PM (2008) GSFLOW-Coupled Ground-water and Surface-water FLOW model based on the integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005). US Geological Survey techniques and methodspp.240
Markstrom SL, Regan RS, Hay LE, Viger RJ, Webb RM, Payn RA, LaFontaine JH (2015) PRMS-IV, the precipitation-runoff modeling system, version 4. US Geological Survey techniques and methods:6-B7
Markstrom SL, Hay LE, Clark MP (2016) Towards simplification of hydrologic modeling: identification of dominant processes. Hydrology and Earth System Sciences 20(11):4655
Mau DP, Winter TC (1997) Estimating Ground‐Water Recharge from Streamflow Hydrographs for a Small Mountain Watershed in a Temperate Humid Climate, New Hampshire, USA. Ground Water 35(2):291-304
Mazi K, Koussis A, Restrepo P, Koutsoyiannis D (2004) A groundwater-based, objective-heuristic parameter optimisation method for a precipitation-runoff model and its application to a semi-arid basin. Journal of Hydrology 290(3):243-258
Moazenzadeh R, Ghahraman B, Arshad S, Davary K (2016) Improving watershed modeling with aggregation of the main hydrological components in SWAT model. Iran-Water Resources Research 12(3):65-79 (In Persian)
Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50(3):885-900
Qi S, Sun G, Wang Y, McNulty S, Myers JM (2009) Streamflow response to climate and landuse changes in a coastal watershed in North Carolina. Transactions of the ASABE 52(3):739-749
Salvettia A, Rufb W, Burlandob P, Juonb U, Lehmannb C (2002) Hydrotope-based river flow simulation in a Swiss Alpine Catchment Accounting for topographic, micro-climatic and landuse controls. Forest 25(17.1):17.7
Simunek J, Sejna M, Van Genuchten MT (1996) HYDRUS-2D: Simulating water flow and solute transport in two-dimensional variably saturated media. International Groundwater Modeling Center, Colorado School of Mines, Golden, Colorado
Vaccaro JJ, Olsen TD (2007) Estimates of ground-water Rrecharge to the Yakima River Basin aquifer system, Washington, for predevelopment and current land-use and land-cover conditions US Department of the Interior. US Geological Survey
Xu Y, Beekman HE (2003) Groundwater recharge estimation in Southern Africa UNESCO IHP Series. Paris UNESCO, pp.207
Zhai Y, Wang J, Teng Y, Zuo R (2013) Hydrogeochemical and isotopic evidence of groundwater evolution and recharge in aquifers in Beijing Plain, China. Environmental Earth Sciences 69(7):2167-2177