جذب داده برای واسنجی-پیش‌بینی با استفاده از مدل SWAT

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد/ مهندسی عمران مهندسی و مدیریت منابع آب، دانشگاه علم و صنعت ایران-تهران.

2 استادیار/دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران-تهران.

3 استادیار /دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران-تهران.

چکیده

در این پژوهش به منظور تخمین پارامترهای مدل SWAT و بکارگیری آن برای شبیه‌سازی هیدرولوژیکی حوضه آبریز مهابادچای (از رودخانه‌های منتهی به دریاچه ارومیه) و پیش‌بینی آبدهی رودخانه، از جذب داده استفاده می‌شود. در ابتدا پس از مدلسازی با استفاده از SWAT، روش SUFI2 که جزء روشهای واسنجی خودکار مبتنی بر عدم‌قطعیت و بهینه‌سازی بوده و درون بسته نرم‌افزاری SWAT-CUP در دسترس است، برای واسنجی مدل SWAT استفاده می‌گردد. سپس برای نشان دادن قابلیتهای جذب داده متوالی در تخمین پارامترهای مدل SWAT و پیش‌بینی آبدهی رودخانه به صورت همزمان، از فیلتر آنسامبل کالمن (EnKF) به صورت تخمین متصل متغیر حالت-پارامتر با برنامه‌نویسی درون محیط نرم‌افزار MATLAB و فراخوانی مدل در همانجا، استفاده می‌شود. نتایج نشان می‌دهد که روند همزمانی واسنجی-پیش‌بینی با استفاده از الگوریتم EnKF برای مدل SWAT باعث افزایش دقت پیش‌بینی و شبیه‌سازی آبدهی ماهانه رودخانه مهاباد در ایستگاه بیطاس در مقایسه با نتایج حاصل از واسنجی مدل با استفاده از الگوریتم SUFI2 می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Data Assimilation for Calibration-Prediction using SWAT Model

نویسندگان [English]

  • M. Bayat 1
  • H. Alizadeh 2
  • B. Mojaradi 3
1 IUSTMSc Graduate in Water Resources Engineering and Management, Civil Engineering School, Iran University of Science and Technology, Tehran, Iran.
2 IUSTAssistant Professor, Civil Engineering School, Iran University of Science and Technology, Tehran, Iran.
3 IUSTAssistant Professor, Civil Engineering School, Iran University of Science and Technology, Tehran, Iran.
چکیده [English]

This paper deals with parameter estimation of SWAT model by means of streamflow data assimilation and application of calibrated model for hydrological simulation of Mahabad River which leads to Urmia Lake. Data assimilation algorithem is compared with SUFI2 algorithem. SUFI2 is an uncertainty-based optimization method first developed for auto-calibration of environmental and water resource models and due to availablity in SWAT-CUP package is usually used for calibration of SWAT. To illustrate capabilities of data assimilation for calibration of the model and prediction of the river discharge, Ensemble Kalman Filter (EnKF) is utilized in a joint state-parameter estimation framework. Both coding EnKF and calling SWAT is done in MATLAB environment. Results show joint state-parameter estimation using EnKF for SWAT, lead to improvement of accuracy of simulation and prediction of Mahabad River’s monthly discharge at Bitass hydrometery gauge compared to parameter estimation of the model using SUFI2.
Keywords: calibration, prediction, SWAT, data assimilation, Ensemble Kalman Filter

کلیدواژه‌ها [English]

  • Calibration
  • prediction
  • SWAT
  • Data assimilation
  • Ensemble Kalman filter
 

Liu Y, Weerts AH, Clark M, Franssen HJH, Kumar S, Moradkhani H, Seo DJ, Schwanenberg D, Smith P, van Dijk AIJM, van Velzen N, He M, Lee H, Noh SJ, Rakovec O, and Restrepo P (2012) Advancing data assimilation in operational hydrologic forecasting: Progresses, challenges, and emerging opportunities. Hydrology and Earth System Sciences 16:3863-3887

Abbaspour KC, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J, Zobrist J, and Srinivasan R (2007) Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of hydrology 333(2):‌413-430

Chen F, Crow WT, Starks PJ, and Moriasi DN (2011) Improving hydrologic predictions of a catchment model via assimilation of surface soil moisture. Advances in Water Resources 34(4):526-536

Clark MP, Rupp DE, Woods RA, Zheng X, Ibbitt RP, Slater AG, Schmidt J, and Uddstrom MJ (2008) Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model. Advances in Water Resources 31(10):1309-1324

Da Ros D, and Borga M (1997) Adaptive use of a conceptual model for real time flood forecasting. Hydrology Research 28(3):169-188

DeChant CM (2010) Hydrologic Data Assimilation: State estimation and model calibration. Thesis, Portland State University

Evensen G (1994) Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research: Oceans 99(C5):10143-10162

Evensen G (2009) Data assimilation: The ensemble Kalman filter. Springer Science & Business Media

Han E, Merwade V, and Heathman GC (2012) Implementation of surface soil moisture data assimilation with watershed scale distributed hydrological model. Journal of Hydrology 416:98-117

Kalman RE (1960) A new approach to linear filtering and prediction problems. Journal of Basic Engineering 82(1):35-45

Moradkhani H (2008) Hydrologic remote sensing and land surface data assimilation. Sensors 8(5):2986-3004

Moradkhani H, and Sorooshian S (2008) General review of rainfall-runoff modeling: Model calibration, data assimilation, and uncertainty analysis. Hydrological modelling and the water cycle p1-24

Reichle RH, Koster RD, Liu P, Mahanama SPP, Njoku EG, and Owe M (2007) Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR‐E) and the Scanning Multichannel Microwave Radiometer (SMMR). Journal of Geophysical Research: Atmospheres 112(D9)

Sun L, Nistor I, and Seidou O (2015) Streamflow data assimilation in SWAT model using Extended Kalman Filter. Journal of Hydrology 531:671-684

Xie X, and Zhang D (2010) Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter. Advances in Water Resources 33(6):678-690